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Abstract

Meta-data hierarchies are playing central roles in the develop-
ment and deployment of many data applications, especially in
the Web. They can be defined as structured information that de-
scribes, explains, locates, and makes it easier to retrieve, use and
manage information resources. In fact, they embody formalized
knowledge and define aggregations between concepts/categories
(in a given domain) facilitating the organization of the data and
making the contents easily accessible to the users of these appli-
cations.

Since hierarchical meta-data have significant roles in the data
annotation, search, and navigation, they are often carefully en-
gineered; however, especially in dynamically evolving domains,
they do not necessarily reflect the content knowledge. In fact,
the stagnant nature of meta-data may fail to timely capture the
dynamic change of the relevant data contents. Moreover, when
the users interests are highly focused, available meta-data, which
are usually designed from domain experts for broad coverage of
concepts in a given application domain, may fail to reflect details
within the users foci of interest.

Thus, in this thesis, we ask and answer, in the positive, the
following question: “is there a feasible approach to efficiently and
effectively adapt a given meta-data hierarchy to changing usage
contexts?”.

Based on these considerations, we propose a set of novel adap-
tation approaches for re-structuring existing meta-data hierar-
chies to varying application contexts and different data formats,
and we evaluate the proposed schemes relying on different data
collections.

Moreover, we leverage these adapted meta-data structures
for innovative data exploration methods that use domain-specific
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concepts (taken from the properly adapted structures) as well as
relevant corpus terms that are characterizing the data collection.
These exploration methods provide novel navigation mechanisms
and improve the efficiency of the standard exploration process,
using the natural relationships expressed by the given contents
in addition to those formalized by the associated adapted meta-
data structures.
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Chapter 1

Introduction

Several Information Retrieval (IR) systems are used on an everyday basis by
a wide variety of users. In fact, considering the enormous amount of avail-
able data sets in the web, often large in volume and complex in structure
(multidimensional and/or hierarchical), it is necessary to assist the user in
handling these large amount of data. Therefore, new access and exploration
methods are needed in order to guide the users through the data, highlight-
ing (if and when requested) hidden relationships among them and helping
the users discover new knowledge previously hardly identifiable.

Data Management can be defined as the set of strategies and procedures
that properly manage the data lifecycle in order to prepare them to be
easily accessible by the users. This field includes various approaches and
techniques that consider the input format data and the aims of their use.
In particular, we distinguish among three important steps': Data analysis
and design, Meta-data association and management and Data exploration
strategies.

The first step is the analysis of data; it consists of inspecting, cleaning,
transforming, and modelling the given data with the goal of selecting the
more suitable formats in order to make them easily accessible by the archi-
tecture that will allow the exploration process on them; within this prelimi-
nary phase, a cleaning procedure is generally needed in order to inspect and
remove useless data. Many IR systems dealing with textual data also use
stop word elimination and stemming in this phase; in fact in the literature,
many investigations suggest that stop word removal improves retrieval sig-

Tn this thesis we will not consider other important aspects of the data lifecycle, as
for example data security or maintenance. We focus our research on innovative pre-
processing and meta-data management operations for novel exploration strategies, relying
on available techniques for other operations.
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12 CHAPTER 1. INTRODUCTION

nificantly. Many techniques have been proposed in order to properly design
the format of the data and formalize the content knowledge.

This set of processes defines the structure and the content of the informa-
tion handled by the system (and, consequentely, by the users). But the data
themselves (even if carefully designed and formalized) are often not enough
to provide smart and fast access to them. In fact, most of the IR systems
generally enrich the considered data by meta-data, that provide supervised
knowledge about the contents that can help the retrieval process. Meta-data
can be defined as structured information that describes, explains, locates,
and makes it easier to retrieve, use and manage an information resource.
For this reason, meta-data is usually defined as data about data.

Some of the most used meta-data types include controlled vocabularies,
taxonomies, thesauri, data dictionaries and registries. Meta-data can be one
dimensional, where each element is semantically separated from other ele-
ments, or hierarchical where evident relationships exist among the elements.

The degree of meta-data is generally referred as its granularity. Meta-
data are generally created with the help of supervised systems (i.e. with
the help of domain experts) in order to provide information that an un-
supervised method is not able to identify and interpret. Meta-data can
serve many important purposes, including data browsing, transfer and doc-
umentation. Meta-data can be organized into several levels ranging from
a simple listing of basic information about available data to detailed docu-
mentation about an individual data set. An important reason for creating
meta-data is to facilitate discovery of relevant information. They can or-
ganize text streams, facilitate interoperability among different systems, and
support archiving and preservation. The importance of meta-data in run-
ning queries is absolutely central to the purpose of many IR systems both
at design time and at run time. Indeed, by associating the data to one or
many elements of the meta-data, they can easily index the contents and also
highlight semantic relationships previously hardly identifiable.

Considering all these aspects, while there are many strategies for or-
ganizing data, hierarchical meta-data categorization, usually implemented
through a pre-determined taxonomical structure, is often the preferred choice.

Hierarchy is a natural way of organizing semantics in natural languages
and an important amount of work has been accomplished on defining se-
mantic relationships between constituents in natural languages and referred
to as taxonomies, thesauri, dictionaries etc. The relationships between con-
cepts are intended to be combined to produce larger propositions that can
then be used in a variety of interpretation paradigms and queries. Hence,
semantic hierarchy is a natural way of querying complex data sets assuming
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that some knowledge about the data (known as metadata) is organized in
a hierarchical manner and carefully linked to the data set. However, defin-
ing a complete and correct hierarchy of metadata for a given application is
extremely hard and time consuming.

In fact, in a taxonomy-based information organization, each element of a
hierarchical meta-data represents a high-level concept that can be associated
to data items that are relevant to it, facilitating the user in the retrieval of
the available contents.

However, creating meta-data for the many and varied domains is a time-
consuming process and meta-data construction is a major bottleneck to the
wider deployment and use of semantic information. Since manual meta-data
construction is costly, error-prone and inflexible to change, it is hoped that
an automated (or semi-automated) process will result in a better meta-data
construction and create knowledge structures that match a specific applica-
tion. Considering these aspects, many resarchers tried to extract and orga-
nize relevant information from the data in order to automatically generate
meta-data [165]. These meta-data learning approaches can be distinguished
based on the type of input used for learning; they can learn from text, from
a dictionary, from a knowledge base, from a semi-structured schema, or
from a relational schema. Currently, few projects attempt to support the
entire meta-data learning process, including automated support for tasks
such as retrieving documents, classifying, filtering and extracting relevant
information for the ontology enrichment; but most existing approaches for
unsupervised meta-data construction require a large number of input doc-
uments for accurate results. Unfortunately, even if these methods can be
very efficient in terms of computational costs, they can not guarantee high
level quality.

For all these considerations, the importance of a well engineered meta-
data structure is absolutely central in an IR application: in fact, with the
enormous growth of the available data (for example, within the web), it is
important to develop information discovery mechanisms based on intelligent
techniques to make this creation process easier for any new specific domain
application (or any user context).

Moreover, since meta-data have significant roles in data annotation, in-
dexing and retrieval, they can also be succesfully used for data search and
navigation purposes; in fact, a meta-data hierarchy is formed by a set of con-
cepts (the number depends on how deeply the domain has been explored)
and a set of edges (representing the relationships among concepts that exist
in the considered domain) that, if used to explore data, can greatly help
improve the efficiency of the exploration process. For example, in order to
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classify musicians, based on their influences or style, it is possibile to choose
a taxonomical meta-data that organizes the artists by music genres; but
also, it is possible for a user to analyze the relationships that exist among
the classified artists by navigating the meta-data and therefore discover new
latent knowledge (i.e, influences among artists, similar styles, etc).

For all these considerations, hierarchical meta-data structures can rep-

resent highly focused alternatives for exploration processes into a large data
set, supporting the standard query mechanisms where they fail in empha-
sizing users interests. In fact, considering also the enormous amount of data
available through web-technologies and the very high number of users that
can access them remotely, it is important to provide personalized strategies
that can help the user in retrieval operations with very focused methodolo-
gies. Personalized search and navigation alleviates the burden of information
overload by tailoring the information presented based on an individual user
needs, and obviously, one of the key factors for accurate personalized in-
formation access is the user context. However, the representation of user
preferences, search context, or the task context is generally missing in most
search engines [80]. Indeed, contextual retrieval has been identified as a
long-term challenge in information retrieval.
Considering these aspects, the meta-data hierarchies can represent possible
usage contexts of the users, defining their foci of interest and leading the
navigation into the data; in fact, by selecting a specific meta-data (or sim-
ply reporting preferences among the proposed concepts), users can clearly
express some interests that can be used by the search and navigational sys-
tem to retrieve data items relevant to the expressed preferences. Thus, a
meta-data structure can also be used for contextualizing the navigation and
retrieval process, providing to the user an intuitive mechanism to explore
the data. Moreover, if the meta-data properly reflect the corpus knowledge
and organizes its content based on the user’s interests, the navigation expe-
rience can have a significant benefit. In this thesis we will evaluate all these
aspects, providing novel algorithms to create a corpus-aware meta-data and
we will use these automatically generated taxonomies for improving, from
a user point of view, the data exploration process. In the next Section, we
provide the details about the specific contributions of this work.

1.1 Contribution of the Thesis

In this thesis, given a data corpus and an associated hierarchical meta-data,
we propose a set of innovative algorithms to analyze the given data and
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adapt the meta-data structure to the semantics expressed by the data them-
selves. In fact, we believe that even if hierarchical meta-data structures are
often carefully engineered by human domain experts, they do not necessarily
reflect the content knowledge, especially in dynamically evolving domains.
Moreover, when the user’s interests are highly focused, available meta-data
structures (which are often designed for broad coverage of concepts in a
given application domain) may fail to reflect details within the users foci of
interest. Thus, in this thesis, we start asking ourself the following question:

“is there a feasible approach to efficiently and effectively adapt a given
meta-data hierarchical structure to a usage context?”

Therefore, we provide different mechanisms to adapt, re-size and re-
model the given hierarchical meta-data structures based on statistical anal-
ysis on the original data, in order to reflect the most relevant information
(properly restructured) in the hierarchies. This way, the resulting struc-
tures are adherent to the original data in such a way that they can lead
more accurate exploration processes. Starting from different assumptions,
we present two different hierarchical meta-data adaptation processes, which
are based on different input data.

After discussing the state of the art in Chapter 2, in Chapter 3 we define
the fundamental notations that we will use along all the thesis. In particu-
lar, we provide a set of methods to make explicit the knowledge that corpus
and meta-data represent, and we introduce a novel meta-data formaliza-
tion method that permits to highlight the correlations existing among the
hierarchy nodes and the considered corpus [21].

In Chapter 4 we analyze text document collections, studying the existing
structural relationships between a text corpus and its associated meta-data.
In particular, we observe that, in a text environment, the primary role of
a meta-data structure is to describe the natural relationships that exist be-
tween concepts (nodes in the meta-data hierarchy) in a given data corpus.
Therefore, a corpus-aware adaptation of a hierarchical meta-data structure
should essentially distill the structure of the existing taxonomy by appro-
priately segmenting and, if needed, summarizing this structures relative to
the content of the corpus. Based on this key observation, we propose a novel
adaptation method for re-structuring existing hierarchical meta-data struc-
ture to varying application contexts and we evaluate the proposed schemes
using different text collections [24]. Metadata are pre-processed in order
to eliminate irrelevant details and obtain a distilled version; pre-processing
needs to be performed carefully to ensure that it does not cause significant
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amounts of information loss. In other words, the hierarchy reduction process
should eliminate the details in the meta-data that are not likely to be used
by the users. Moreover, considering the different needs of each user, the
reduction also has to let the user chose the detail level she is interested in,
i.e., let her select how much data need to be preserved in the final structure.

Then, after adapting a given hierarchical meta-data structure to a usage
context, in Chapter 5, we propose a novel Context-based Search and Nav-
igation (CoSeNa) technique that leverages the relationships vehiculated by
the adapted meta-data hierarchy to guide the user in a more effective explo-
ration of the data [25, 26]. In particular we define a keywords-by-concepts
(KbC) graph, which supports navigation using meta-data concepts as well as
keywords characterizing the corpus of data. The KbC graph is a weighted
graph, created by tightly integrating keywords extracted from documents
and concepts obtained from domain meta-data structures. Documents in
the corpus are associated to the nodes of the graph based on evidence sup-
porting contextual relevance; thus, the KbC graph supports contextually
informed access to these documents. The construction of the KbC graph re-
lies on a spreading-activation like technique which mimics the way the brain
links and constructs knowledge. This proposed system leverages the KbC
model as the basis for document exploration and retrieval as well as con-
textually informed media integration. In fact, using CoSeNa, the user can
navigate within the document space by leveraging navigational path that the
system proposes. Moreover, the proposed system provides integration with
three online popular media sources: Google Maps, Flickr, and YouTube.

The second part of the thesis is devoted to metadata adaptation to en-
hance the efficiency of the navigation in structured domains. Chapter 6
focuses on the cases where metadata are summarized and adapted to im-
prove the navigation efficiency and effectiveness within dataspaces consisting
of relational tables [20].

Considering data tables with millions of entries and dozens of different
attributes, we optimize our approach in order to handle those large amount
of data. Thus, we provide (as we did for the text corpora) optimized al-
gorithms for extracting the most representative knowledge from the tuples
and organize it in a meta-data structure, respecting as much as possible the
original structured knowledge expressed by the given meta-data hierarchy.
The proposed approach minimizes the information loss due to the reduc-
tion in details leveraging the redundancy in the data to identify value and
tuple clustering strategies that can result in (almost) the same amount of
information, but with a smaller number of data representatives. Therefore,
this meta-data adaptation approach permits to reduce the size of the given
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meta-data hierarchies (and re-format their internal structures) based on the
distribution of the data in the considered tables.

Then, we apply the proposed adaptation method to hierarchical meta-
data structures related to data tables that need to be reduced in their cardi-
nality, in order to be easily explored in their largeness. In fact, exploration
of large data tables is required in many scenarios where it is hard to dis-
play complete data sets, formed in many cases by millions of tuples and
dozens of different attributes. Consider, for example, a scientist exploring
a data base which archives and provides access to a large number of data
collected by different researchers within the context of different projects.
When this scientist poses a search query, without any knowledge about the
specific data tables contents, her query might match many potentially rel-
evant data tables. For this scientist to be able to explore the multitude of
candidate data resources as quickly and effectively as possible, data reduc-
tion techniques are needed. Based on this key observation, the proposed
exploration approach relies on the idea of summarization, and it takes as
input a data table and (using the previously calculated adapted meta-data
hierarchy) returns a reduced version of it, allowing the user to analyze only
few entries that represent the general trends. The result provides tuples
with less precision than the original, but still informative of the content
of the database. This reduced form can then be presented to the user for
exploration or be used as input for advanced data mining processes. In par-
ticular, with this method, each tuple in the original table is represented, in
the summary, with a more generic tuple that summarizes its knowledge; on
the other hand, each new tuple in the summary represents a maximal set of
original tuples that can be expressed by it minimizing the information loss.
In fact, our summarization approach leverages the underlying redundancy
(such as approximate functional dependencies and other patterns) in the
data to minimze this information loss.

All these methods are therefore evaluated by analyzing the performances
of each proposed meta-data adaptation approach in order to quantify the
benefits of using an adapted hierarchy (instead of the original one) and we
compare our ideas to existing tree re-structuring methods. Moreover, we
also analyze the computational costs of this pre-processing operations and
we study their advantages and disadvantages against alternative adaptation
methods.
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Chapter 2

State of the Art

Considering the explosion of the accessible contents, especially on web com-
munities, the problem of searching, indexing and navigating the available
data is becoming very important. Moreover, with the advent of the new
portable devices there is an emerging need for novel smart and flexible mech-
anisms to access and retrieve relevant information within the user’s focus of
interest.

Considering these aspects, we distinguish between two important objec-
tives:

e information access and retrieval: we need to provide different retrieval
mechanisms to the user, in order to have the useful information com-
pletely accessible in every condition and with every support;

e navigation into the document space: we need to provide novel mecha-
nisms for an easy and smart exploration of the data, also highlighting
hidden relationships among them and helping the user discover seman-
tically relevant connections among them.

In the following Sections, we will analyze in details both aspects, provid-
ing a broad overview of the existing approaches in the research community.

2.1 Query Expansion and Re-Formulation

In the literature, the most popular retrieval approach is based on search
queries. In fact, most information retrieval (IR) systems rely on a keyword
search scheme, where queries are answered relying on the keyword contents
of the text. Generally, the common way to search data information in huge
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data sets is to provide search keywords to the system; but too often the
user queries are under-specified. Users tend to provide at most two or three
keywords but this is often insufficient to hone on the most relevant docu-
ments [149].

Considering the web space, where hyperlinks provide structural evidence
to help identify authoritative sources, link analysis is used to help tackle
this problem. But even then, query under-specification remains a signifi-
cant challenge. In order to address this challenge, one of the most popular
approaches is query expansion [94]; the goal of this approach is to modify
the initial query by adding, removing and/or changing terms with similar
ones.

Existing state-of-the-art query expansion approaches can mainly be clas-
sified into two classes: global and local analysis. The first one relies on
corpus wide statistics such as the co-occurrences of every pairs of terms.
To expand a query, the terms which are more similar to it are also consid-
ered. On the other hand, local analysis uses only some initially retrieved
documents for further query expansion. An hybrid solution was introduced
in [159], where both co-occurrences and local concepts selection are used for
retrieval.

In [148], the authors present an example of global analysis approach:
they propose a technique which adds terms obtained from term clusters
built based on co-occurrences of terms in the document collection. A similar
work was presented in [122]: in this work term similarities are used instead
of term co-occurrences. These methods, however, cannot handle ambiguous
terms: if a query term has different meanings, the clustering will add non-
related terms thus making the expanded query ambiguous as well. In [122]
the authors introduce a method for expanding target concepts of the whole
query instead of a term-by-term change.

In [36] the authors exploit user logs for query expansion. Every search
engine accumulates a large amount of query logs. The basic idea is that if a
set of documents is usually selected for the same queries, then the terms in
these documents are somehow related to the terms of the queries. Thus some
correlations between query terms and document terms can be established
based on such query logs.

Another common query reformulation method is user’s relevance feed-
back [134]. The idea is to ask the users to mark relevant documents in
search results and re-weighting the keywords of the initial query based on
how effective they are according to such feedback. The obvious drawback of
this technique is that it puts significant overhead on the users and assumes
that the users know what they want and can provide consistent feedback.
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Since this is rarely the case, the relevance feedback may by ineffective or
may require significant amount of interactions. This mechanism has the
big problem of charging the user with another, maybe hard, work on the
data. One way to reduce the load on the user is to rely on pseudo relevance
feedback [55], where the top ranked documents are assumed to be relevant
and query enrichment is performed without user intervention, using these
top-ranked documents. But this scheme works only if the initial query re-
sults are highly relevant and can degenerate if the first query results contain
not-so-relevant documents.

Query reformulation can also be done by replacing items in a thesaurus
with their longer descriptions. The thesaurus may be based on the used
collection or based on a top domain knowledge like Wordnet [46]. However,
these schemes still assume that user’s initial query is highly precise and
its expansion is sufficient to identify the relevant documents. Therefore,
one needs to be very precise in formulating, or retrieving, the expansion of
the keywords: in fact the system should guarantee the consistency of the
re-formulated query by also analyzing the possibile ambiguities.

2.2 Information Retrieval by Exploring and Brows-
ing

An alternative approach to retrieval is to rely on an exploratory process
instead of data indexing and query matching [85]. As stated in [145] there
exist three reasons for preferring this retrieval-by navigation approach over
pure keyword-based text retrieval:

1. query formulation represents the most critical step in the whole re-
trieval process [131] because of a variety of factors such as user inex-
perience and lack of familiarity with terminology;

2. the scope of a user query, in many cases, is too broad to express
precisely using a set of keywords;

3. the users prefer to navigate within a topic rather than being despatched
to some system-relevant documents. Navigation process helps users
understand the surrounding context to better hone on the relevant
documents. This behavior is called orienteering [152].

Consequently, even if many existing retrieval systems continue to rely
on the more traditional query-based IR model, there is a recent tendency
towards relying on browsing in contrast to directed searching. In these
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schemes, querying is nothing but an initial way of identifying starting points
for navigation, and navigation is guided based on the context supplied in
the query as well as any additional semantic metadata, such as taxonomies.
These “semi-directed or semi-structured searching” processes [42, 145] help
address the “don’t-know-what-I-want” behavior [7] more effectively than
relevance feedback schemes that assume that the user knows what she wants.

Considering this navigational approach, we distinguish two distinct im-
portant sub-problems:

1. finding starting points for exploration, and
2. providing guidance during navigation.

The problem of finding a useful starting point has been extensively stud-
ied: for example, Best Trails [156] selects starting points in response to
queries, but it restricts them to be documents matching the query. The
authors also propose an ad-hoc scoring function without considering naviga-
bility factors. Further, Best Trails’ user interface departs substantially from
the traditional query/browse interface and is difficult to use (as reported by
the user study in [156]). The approach proposed in [145] closely adheres to
familiar interfaces offered by popular query and browse tools. The hyper-
text retrieval paradigm known as topic distillation ( [10], [27], [77]) aims to
identify a small number of high-quality documents that are representative
of a broad topic area. The basic idea in topic-distillation is to consider the
structure of the data and propagate scores between documents in a way to
organize topic spaces in terms of smaller sets of authoritative documents.
Moreover, given a query, other methods propagate the term frequency values
between neighboring documents [140] or the relevance score itself between
documents connected with hyperlinks [144]. Much of the work to date on
topic distillation uses as a primitive the HITS algorithm [77], which identi-
fies sub-graphs consisting of hubs and authorities. Under the HITS model,
good hubs are those that have many links to good authorities. Symmet-
rically, good authorities are those that are linked to by many good hubs.
HITS-based approaches are inherently effective only for broad topic areas
for which there are many hubs and authorities. The work of [75] aims to
identify nodes of maximum influence in a social network, where the defini-
tion of influential nodes is related to the notion of good starting points.

But even considering good starting points (from a user perspective),
as previoysly reported, it is necessary to provide to the user a guidance
during her navigation process. For example, [72] highlights hyperlinks along
paths taken by previous users who had posed similar queries. This approach
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may not be suitable for open-ended search tasks where the query is not a
good representation of the underlying search task. Other approaches ( [86],
[103]) do not rely on queries but instead passively observe the users browsing
behavior in order to learn a model of her search task, and highlight links
that match the inferred task.

Highlighting of hyperlinks based on an explicit query, as a method of
navigation guidance, was evaluated, with a user study, in [109]. Guided
navigation was found to result in significantly faster completion of certain
search tasks compared to traditional query and browsing interfaces, assum-
ing the user already knows of a suitable starting point.

2.3 Data Summarization: Reducing the Cardinal-
ity to Help the User Explore the Data

While the existing exploration systems help the user navigate within the
data sets, most of them fail to orient her within it, because of the very large
number of single data items; in fact, even the best search/navigation system
can not efficiently handle millions of single data items and generally fails
to effectively report the results of a user query (or they fail to efficiently
organize them). Indeed, most of the users are disoriented by very large list
of resulting documents (returned by standard keyword-based search query),
or by too large data navigational path (in navigation-based IR system) and
get confused by the cardinality of the presented results. Moreover, it has
been proved that, in case of very large result lists, the user only takes into
account the first ones, completely ignoring the majority of the reported data
items.

From a user’s point of view, the smart and flexible query methods can
help provide a fast and direct access to the data but do not help the user in
the understanding of the returned results; as deeply studied in the literature,
if the visualization of the data results hard and complex, even the positive
effect of efficient retrieval methods vanishes.

For all these considerations, many IR systems also rely on cardinality re-
duction processes, that minimize the information loss due to the reduction in
details. In order to do this, many data reduction/summarization algorithms
have been proposed. In fact, a summarization algorithm usually leverages
the redundancy in the data to identify value and clustering strategies that
represent the (almost) same amount of information with a smaller number
of data representatives.

In the literature the summarization problem has been extensively stud-
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ied; in the following Sections we will analyze the proposed approaches, dis-
tinguishing among them based on the format of the considered data.

2.3.1 Text Data Summarization

Considering the text data format, the summarization process is generally
based on the study of narrative topic development; in particular, summa-
rization of a text stream relies on the analysis of the evolution of the topics
expressed by the sequence of sentences. Given a text document, the task
of text summarization is to condense the information (minimizing the infor-
mation loss) in the input document in a more concise output.

One of the earliest summarization approaches by Luhn [88] uses word
frequency counts in the text to detect important words and assigns signifi-
cance scores to sentences based on the occurrence of significant words in the
sentence and their position in the sentence. In [161], the authors use word
frequency and word position in the document, as against sentence position
to score sentences. Sentences are then selected so as to maximize the total
sentence score in the summary. In TXTRACT [11], Boguraev and Neff
utilize text discourse segmentation to aid a summarizer based on salience
with a background document collection.

More recently, other approaches have investigated the discourse struc-
ture [95], the combination of information extraction and language genera-
tion [132], and machine learning techniques to find patterns in the given
text [153].

In general, we can distinguish two different summarization problems:
single document and multi-document summarization problems. In single
document summarization, summary sentences are typically arranged in the
same order as in the full document, although [70] reports that human sum-
marizers do sometimes change the original order. In multi-document sum-
marization, the summary consists of fragments of text or sentences that were
selected from different documents. Thus, there is no complete ordering of
summary sentences that can be found in the original documents. In do-
main dependent summarization, it is possible to establish possible orderings
a priori. A priori defined simple ordering strategies are combined together
by looking at a set of features from the input. [41] uses such techniques
to produce patient specific summaries of technical medical articles. In [6],
the authors proposed a strategy for ordering information that combines con-
straints from chronological order of events and topical relatedness. Another
approach [104] is bottom-up reordering and it is used to group together
stretches of text in a long, generated document by finding propositions that
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are related by a common focus.

On a different dimension, there are two types of summarization: ex-
tractive and abstractive summarization. Extractive summarization usually
ranks the sentences in the documents according to their scores calculated
by a set of predefined features, such as term frequency-inverse sentence
frequency [124], term/sentence position [160], [161], and number of key-
words [161]. [54] proposes a method using latent semantic analysis to select
highly ranked sentences. In [53], the authors describe a maximal marginal
relevance method to summarize documents based on the cosine similarity
between a query and a sentence. [155] is based on sentence-level semantic
analysis (sentence-sentence similarities) and symmetric non-negative matrix
factorization. Other methods include CRF-based summarization [146] and
hidden Markov model based methods [35]. Instead, abstractive summariza-
tion involves information fusion, sentence compression and reformulation
([78], [71]).

Many other approaches also take into account a pre-process ordering
method; the basic idea is to find a reasonable order among all the data
entities of the considered data set and then, apply the reduction algorithm.
Therefore, an ordering mechanism can be defined as a method that, given a
set of data documents, should be able to provide an order of data portions
that reflects, as much as possible, the knowledge structure represented in
the whole set of documents.

Considering the text data field, the ordering task can be easily seen as a
sentence ordering problem: this problem has been extensively investigated
in the literature [96, 105, 63, 104].

2.3.2 Data Table Summarization

The summarization problem has been also extensively studied within the
database field. Many systems in fact rely on database for the data organiza-
tion and, due to the huge amount of stored data, it is not reasonable to pro-
vide a complete view of all of them. For example, [127, 128] present a table
summarization system called SaintEti(), which computes and incrementally
maintains a hierarchically arranged set of summaries of the input table. This
way the system can select the most suitable summary to present to the user
(depending on her need) providing a reduced view of the data. SaintEtiQ)
uses background knwoledge (i.e. metadata) to support these summaries. [3]
also performs data summarization, but it relies on frequent patterns in the
relational dataset.

TabSum [87] creates and maintains table summaries through row and
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column reductions. To reduce the number of rows, the algorithm first parti-
tions the original table into groups based on one or more attribute values of
the table, and then collapses each group of rows into a single row relying on
the available metadata, such as the concept hierarchy. For column reduc-
tion, it simplifies the value representation and/or merges multiple columns.
[157] discusses a related approach for refinement of table summaries. Nei-
ther of these approaches, however, considers the impact of the imprecision
of metadata during summarization.

Data compression techniques, like Huffman [64] or Lempel-Ziv [166], can
also be used to reduce the size of the table. For example, [107] presents
a database compression technique based on vector quantization. Buchs-
baum et al. [15, 14] develop algorithms to compress massive tables through
a partition-training paradigm. These methods, in general, are not directly
applicable to our problem domain since the compressed tables are not human
readable.

Histograms can also be exploited to summarize information into a com-
pressed structure. Following this idea, Buccafurri et al. [13] introduce a
quad-tree based partition schema for summarizing two-dimensional data.
Range queries can be estimated over the quad-tree since the summariza-
tion is a lossy compression. Leveraging the quad-tree structure, [37] pro-
poses approaches to processing OLAP operations over the summary. [37]
first generates a 2-dimensional OLAP view from the input multidimensional
data and then compresses the 2-dimensional OLAP view by means of an
extended quad-tree structure. In fact, any multidimensional clustering al-
gorithm can be used to summarize a table. Such methods, however, do
not take into account specific domain knowledge (e.g. “what are acceptable
summarizations, how do they rank?”) that hierarchies would provide.

OLAP operations, drill-down and roll-up, which help users navigate be-
tween more general and more specific views of the data with the help of given
value hierarchies, are also related to table summarization. The concept of
imprecision in OLAP dimensions is discussed in [113]. In that framework,
a fact (e.g., a tuple in the table) with imprecise data is associated with
dimension values of coarser granularities, resulting in the dimensional im-
precision. In schema design for traditional relational-OLAP systems, issues
about heterogeneous dimensions have been discussed in [66, 65]. A dimen-
sion is called heterogeneous if two members in a given category are allowed
to have ancestors in different concepts. Given a heterogeneous dimension,
an aggregate view for a category may not be correctly derived from views for
its sub-categories; in fact, the summarizability denotes the conditions under
which a value or object can be summarized correctly from a more detailed
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value or object, based on the given summarization rules (e.g., value map-
pings and value lattices). In [121], the authors supported OLAP operations
over imperfectly integrated taxonomies.

The table summarization task is also related to the k-anonymization prob-
lem, introduced as a technique against linkage attacks on private data [137,
8, 83]. The k-anonymization approach eliminates the possibility of such at-
tacks by ensuring that, in the disseminated table, each value combination of
attributes is matched to at least k others. To achieve this, k-anonymization
techniques rely on a-priori knowledge about acceptable value generaliza-
tions. Cell generalization schemes [2] treat each cell in the data table inde-
pendently. Thus, different cells for the same attribute (even if they have the
same values) may be generalized in a different way. This provides signifi-
cant flexibility in anonymization, but the problem is extremely hard (NP-
hard [97]) and only approximation algorithms are applicable under realistic
usage scenarios [2]. Attribute generalization schemes [137, 8, 83] treat all
values for a given attribute collectively; i.e., all values are generalized us-
ing the same unique domain generalization strategy. While the problem
remains NP-hard (in the number of attributes), this approach saves signif-
icant amount of time in processing and may eliminate the need for using
approximation solutions, since it does not need to consider the individual
values. Most of these schemes, such as Samarati’s original algorithm [137],
however, rely on the fact that, for a given attribute, applicable generaliza-
tions are in total order and that all the generalization steps in this total
order have the same cost. [137] leverages this to develop a binary search
scheme to achieve savings in time. [83] relies on the same observation to
develop an algorithm which achieves attribute-based k-anonymization one
attribute at a time, while pruning unproductive generalization strategies. [§]
assumes an attribute order and attribute-value order to develop a top-down
framework with significant pruning opportunities. In [19] the authors have
formulated the problem of table summarization with the help of domain
knowledge lattices providing the outline of a fuzzy mechanism to express
alternative clustering strategies.

2.4 Information Organization Supported by Hier-
archical Meta-Data

An important help in searching and navigating into huge data sets could be
also given by hierarchical meta-data structures; in fact, a meta-data based
categorization is a crucial and well-proven instrument for organizing large
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volumes of data information. Automatically categorizing documents into
pre-defined topic hierarchies (or taxonomies) is a crucial step in knowledge
and content management; indeed taxonomies embody formalized knowledge
and define aggregations between concepts/categories in a given domain that
could facilitate the organization of the data and make the contents easily
accessible to the users.

A concept meta-data hierarchy is considered an effective representation
that describes relevant categories related to a particular domain. In a web
environment for example, a concept taxonomy can be also used to flexibly
describe and index, with varying granularity, various web contents.

Currently there are many concept hierarchies available in the web; in
fact they also enable sharing and integration of information from different
domains and data sources. However, given a data set, it is not easy to find
the appropriate categorization that best describes and indexes the contents.
The available meta-data hierarchies are usually designed for broad coverage
of concepts in a considered domain, failing to properly reflect important de-
tails within the considered data collection. Indeed, especially in dynamically
evolving domains, the available structures could not necessarily reflect the
content knowledge. For all these considerations, the research community
has investigated the problem of automatically creating/distilling meta-data
hierarchies that best reflect the considered data information. To cope with
this, many different approaches have been studied, taking into account dif-
ferent constraints and needs. In the following Sections, we will provide a
broad overview about the existing algorithms.

2.4.1 Unsupervised or Semi-Supervised Meta-data Distilla-
tion Approaches

Many authors tried to automatically extract hierarchical categorizations
from the considered data that have to be indexed. [16] presents an overview
about the many methodologies that have been proposed to automatically
extract structured information from a considered data set (reporting also
procedures and metrics for quantitative evaluations). In [139] the authors
present an unsupervised method to automatically derive from a set of doc-
uments a hierarchical organization of concepts (salient words and phrases
extracted from the documents), using co-occurrence information.

One of the most critical tasks in unsupervised (or semi-supervised) cat-
egorizations is the definition of the semantical relationships among the re-
trieved concepts: [32] organizes the extracted concepts by analyzing the
syntactic dependencies of the terms in the considered text corpus. [33] also
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considers multiple and heterogeneous sources of evidence to improve the
hierarchical relations between the selected terms. Many methods rely on
preliminary supervised operations to limit the noise in the retrieved con-
cepts: in [12], the user sketches a preliminary ontology for a domain by
selecting the vocabulary associated to the desired elements in the ontology
(this phase is called lexicalisation).

In the last few years, with the increase of semi-structured information
repositories, many authors tried to leverage the information vehiculated by
these sources to reduce the imprecision in the retrieved hierarchies: for
example, in [115, 116], the authors investigate the problem of automatic
knowledge acquisition from Wikipedia repositories. Moreover, [141] lever-
ages the tag vocabulary extracted by Flickr to induce an ontology by using
a subsumption-based model.

In [93] the authors present a meta-data hierarchy learning framework
that extends typical meta-data engineering environments by using semiau-
tomatic ontology construction tools.

As already reported, hierarchical categorizations, when available, can
play a significant role in the organization and summarization of the data.
[82, 81] generate hierarchies in order to summarize the documents retrieved
by a search engine, while [79] proposes a hierarchical clustering algorithm to
build a topic hierarchy for a collection of documents retrieved in response to
a query. In a text environment, a concept meta-data hierarchy can be also
used to flexibly describe a user/group’s interests with varying granularity.
However, the stagnant nature of the developed structure may fail to timely
capture the dynamic change of the user’s interest and the complex nature of
the evolving contents. [151] addresses the problem of how to adapt a topic
meta-data structure in order to reflect the change of a group’s interest to
achieve dynamic group profiling.

Moreover, researchers have attempted to construct meta-data hierar-
chies by examining the data domains. This is useful because implementers
can quickly identify various techniques that can be applied to their domain
of interest. [23] constructs a data-oriented taxonomy, visualizing several
subcategories. Previously, [31] proposed a taxonomy of information visual-
ization techniques based not only on data types, but also on the processing
operators that are inherent in each visualization technique.
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2.4.2 Meta-data Hierarchies Matching: Studying and Ana-
lyzing the Taxonomical Structures

Meta-data structures from different sources (and referring to the same do-
mains) are rarely identical; in fact, their knowledge structure strictly de-
pends on the domain expert that defined them and, in many cases, there is
need for techniques to find alignments between concepts in different struc-
tures.

The problem of matching context-describing meta-data hierarchies has
been investigated in various application areas, especially in scientific, busi-
ness, and web data integration [126, 44, 100, 98, 39, 102, 92, 111, 22|. Dif-
ferent matching techniques focus on different dimensions of the problem,
including whether data instances are used for schema matching, whether
linguistic information and other auxiliary information are available, and
whether the match is performed for individual elements (such as attributes)
or for complex structures [126].

Cupid [91] is a schema-based approach that implements a sequential com-
position of different matchers. It consists of a first phase based on a linguis-
tic matcher and a second phase based on a structural matching technique.
The linguistic matcher calculates similarity coefficients between schema la-
bel nodes, while the structural matcher computes similarity values which
measure the similarity between contexts in which elementary schema ele-
ments occur. A final phase aggregates these results by means of a weighted
sum and compares them with a given threshold in order to generate the
alignment. This algorithm operates only with trees: other schemas can be
handled through a translation process. [100] uses schema graphs for match-
ing; matching is performed node by node starting at the top; thus this
approach presumes a high degree of similarity (i.e., low structural differ-
ence) between the taxonomies. Onion [102], the successor of SKAT [101],
is a schema-based system that leverages logic rules to discover match and
mismatch relationships between multiple ontologies, represented internally
as labeled graphs. The matching algorithm proposes a sequential (and semi-
automatic) approach that first performs a linguistic match and then applies
a structure-based matching. The latter is based on the result of the first step
and tries to match only the unmatched terms; it is based on a structural
isomorphism detection technique between the subgraphs of the ontologies.

[22] and DIKE [112] use the distance of the nodes in the schemas to
compute the mappings; while computing the similarity of a given pair of
objects, other objects that are closely related to both count more heavily
than those that are reachable only via long paths of relationships. Glue [40],
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the successor of LSD [38], is an instance-based semi-automatic system that
uses machine-learning techniques to discover one-to-one mappings between
two taxonomies. It is based on the calculus of the joint distributions that
are used for any similarity measures. This approach can be divided in three
steps. First, a multi-strategy learning approach allows to compute the joint
distribution of classes that are used in the second step to produce a simi-
larity matrix. The latter is used in the final phase by a relaxation labeling
technique in order to filter only the best matches contained in the simi-
larity matrix. Differently from Glue, FCA-merge [150] takes as input two
ontologies that share the same set of instances and produces a new ontol-
ogy as result. It uses formal concept analysis techniques, through a process
made up of three steps: instance extraction, concept lattice computation,
and (interactive) generation of the final new ontology. Clio [98, 99] is a
mixed schema-based and instance-based system that proposes a declarative
approach to schema mapping between either XML and relational schemas.
After the first phase in which input schemas are translated into an inter-
nal representation, the system combines sequentially an instance-based at-
tribute classification (by using a Bayes classifier) with a string matching
between elements name. These n-to-m value correspondences can be also
entered by the user through a graphical user interface. After that, Clio pro-
duces a set of logical mappings with formal semantics, supporting also map-
pings composition. [44] provides a more detailed classification of matching
techniques, based on other features including different similarity measures,
matching strategies (such as name similarity or class similarity), and degrees
of user involvement. [61] proposes an algorithm for ontology matching that
combines standard string distance metrics with a structural similarity mea-
sure based on a vector representation. Despite such advances in structural
mapping technologies, alignments across data sources are rarely perfect. In
particular, imperfection can be due to homonyms (i.e., nodes with identical
concept-names, but possibly different semantics, in the given taxonomy hier-
archies) and synonyms (concepts with different names but same semantics).
While structural-matching techniques help finding node-to-node alignments,
they fall short when such scenarios arise.

2.4.3 Meta-Data Adaptation/Summarization: Re-Structuring
the Hierarchical Knowledge for Reduction Purposes

The advent of the Web and the enormous growth of digital content in in-
tranets, databases, and archives, have further increased the demand for
meta-data categorization hierarchies. Obviously, manual categorization of-
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ten lacks economic efficiency and automatic tools are indispensable to sup-
plement human efforts. Thus, there is a need for novel instruments for sup-
porting the creation of properly adapted (and in many cases also reduced)
meta-data structures; in order to adapt/summarize hierarchical structures
to represent (and eventually index) the available contents, various hierarchi-
cal clustering methods have been proposed.

Again, the basic idea is that, considering the novel visualization devices
and the different user needs, it could be necessary to reduce the cardinality
of the selected meta-data hierarchy. Obviously this reduction process has
to leverage the underlying redundancy while preserving as much as possible
the data information within the user’s foci of interest.

To cope with this, many meta-data reduction algorithms have been pro-
posed; most of them use a hierarchical clustering approach. There are two
major approaches for hierarchical clustering: agglomerative clustering and
divisive clustering. In [1], the centroids of each class are used as the ini-
tial seeds and then a projected clustering method is applied to build the
hierarchy. During the process, the clusters with too few documents are dis-
carded. Thus, the taxonomy generated by this method might have different
categories than those predefined. In [84] a linear discriminant projection is
applied to the data first and then the hierarchical clustering method UP-
GMA [69] is exploited to generate a binary tree. [118] applies a divisive
hierarchical clustering; the authors generate a taxonomy with each node as-
sociated with a list of the categories. Each leaf node has only one category.
This algorithm basically uses two centroids of the categories which are fur-
thest away from each other as the initial seeds and then it applies spherical
k-Means to divide the clusters into two sub clusters. [62] associates word
distribution conditioned on classes to each node: the method uses a variance
of the EM algorithm to cluster nodes. Similarly, [142] presents a method in
which concepts are probabilistically modelled. The probabilistic classes are
organized in hierarchies by relying on the KL divergence measure between
the probability distributions associated to the concepts.

Considering the current state of the art, there are a lot of possible uses
for summarized categorization structures. In fact, summarization has been
used to support various reasoning tasks. Fokouel et al. [48] focus on the
problem of summarizing OWL structures while KAONZ2 [67] reduces an on-
tology to a disjunctive datalog program and makes it naturally applicable to
reasoning with Aboxes stored in deductive databases. Another interesting
RDF-based approach was proposed by Zhang et al. [163]. An RDF Sentence
Graph is proposed to characterize the links between RDF sentences derived
from a given ontology. The salience of each RDF sentence is assessed in
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terms of its centrality in the graph. Zhang et al. propose to summarize
an ontology by extracting a set of salient RDF sentences according to a re-
ranking strategy. Since many metadata types, such as value hierarchies and
taxonomies, are hierarchical, researchers also experimented with tree sum-
marization algorithms [52, 125]. For example, Davood et al. [125] observed
that summaries of XML trees did a much better job in document clustering
tasks than methods using edit distance values, e.g. [108], on the original
trees.

DataGuides [52] was one of the first approaches which attempted to
construct structural summaries of hierarchical structures to support effi-
cient query processing. Though this and similar methods work fine for tree
based structures, in the sense that the number of nodes in the summary are
less than in the original tree and that they capture the structure well, the
constructed summaries are not trees, but graphs. Various other summariza-
tion algorithms, such as [125, 60, 30], focus on creating summaries suitable
for efficient similarity-search in tree-structured data. Since, once again, the
goal of these algorithms is not to obtain a smaller tree representing the
larger one provided as input, but to find a representation that will speed up
query processing, the resulting summaries are in the form of strings, hash
sequences, and concept/label vectors. Our goal, in this thesis, however is to
reduce the size of the input taxonomy tree to support table summarization
process, therefore these and similar algorithms are not applicable.

2.4.4 Evaluation of Meta-Data Structures

Evaluation of the quality of automatically generated (or adapted) meta-data
hierarchies is a very important and non-trivial task. In the literature, many
evaluation measures have been introduced. In [162], the authors determine
the precision of the clustering algorithm by manually assigning a relevance
judgment to the documents associated to the clusters. In [164], the authors
use the F-Score to evaluate the accuracy of the document associations (but
the approach requires a ground truth, which is hard to determine in many
cases). In [138] the authors perform a user study to evaluate the qualities of
the relationships between concepts and their children and parent concepts.
In [82], authors estimate the goodness of concepts when compared to the top
TF-IDF terms and measure the quality of the concepts by evaluating their
ability to find documents within the hierarchy (the “reach time” criterion
measures the time taken to find a relevant document).



34

CHAPTER 2. STATE OF THE ART



Chapter 3

Definition of the Hierarchical
Meta-Data Knowledge

In this chapter, we define the fundamental knowledge and the notations that
we will use along all the other chapters of the thesis. Given as input data a
hierarchical meta-data (defining the considered domain) and a related data
corpus, as originally proposed in [21] and [25], we apply standard knowledge
extraction techniques and innovative statistical analysis methods in order to
make explicit the knowledge they both represent and highlight the correla-
tions existing among them. In particular, as explained in [21], we introduce
novel mechanisms to formalize the meta-data hierarchy knowledge that not
only leverage the structural information but also enrich them by analyzing
the considered corpus contents.

In order to do that, we introduce three main operations that formalize
the knowledge expressed by the input data:

e data vectorization: given an input taxonomy and a related data cor-
pus, we formalize the knowledge expressed by them in a vector space,
making this knowledge accessible, usable and comparable by other
statistical analysis processes.

e data association process: this process assigns each given data element
(from the given corpus) to one or more concept-categories (and vice-
versa) based on the semantical similarity; we propose different ap-
proaches that take into account different requirements.

e concept-keyword relationship: in order to improve the quality of the as-
sociation process (that can properly define each considered concept),

35
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we introduce a novel relevance feedback-based method that highlit-
ghs new hidden relationships between relevant terms (contained in the
given data corpus) and the original concept/categories of the given
taxonomy, making the latent semantic connections among them ex-
plicit.

In the next Sections we will analyze in details each of these operations.
Finally, in Section 3.4, we will study the efficacy of our meta-data knowl-
edge formalization approach by comparing the proposed approach against
alternative representation methods.

3.1 Data vectorization

In order to analyze the knowledge expressed by the input taxonomy and
compare such information against the data corpus, we need to formalize the
relevant knowledge they express in a shared common space.

3.1.1 Structural Vectorization of a Meta-Data hierarchy

Taxonomies (also referred to as hierarchies in this thesis) have played a
central role in the development and deployment of many applications and
have significant roles in the data annotation, search and navigation. They
are generally defined (or extracted) by human domain experts and they
represent a general knowledge about a specific domain organized in such a
way to be easily understandable by human users. They embody formalized
knowledge and define aggregations between concepts/categories (expressed
by nodes in the hierarchical structure) in a given domain and could facilitate
the organization of the data making the contents easily accessible to the
users (by using the structure to index the available contents). However,
in order to express the knowledge defined by the hierarchy itself, we need
to formalize it by explicitating the information defined by the structure in
a new vector space. Our basic assumption is that a meta-data hierarchy
H(C,E) is a tree structure, composed by n = |C| concept-nodes, which
satisfies two basic properties:

e a more general concept-node in the hierarchy subsumes its children
concepts.

e The concepts subsumed by a concept-node are usually non-overlapping.
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Given this type of structure, without loss of generality, for the structural
vectorization process, we rely on the CP/CV mapping algorithm proposed
in [76].

Definition 3.1.1 (Concept-Vector ¢v) Given a tazonomy H(C,E), we
map each concept-node as a concept-vector ¢v with n dimensions, in such a
way to encode the structural relationship (defined by the edges in E) between
this node and all the other nmodes in the hierarchy. The concept-vectors
are obtained by propagating the weight of each concept on the taxonomy
tree according to their semantic contributions to the definition of the other
concepts (dictated by the edges of the taxonomy).
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Figure 3.1: Example of a geographical taxomomy fragment.

The purpose of propagation is to identify the weighted concept-vectors
that can represent the given nodes. Thus, for a taxonomy H with n nodes,
CP/CV calculates n vectors that represent the hierarchy nodes, as follows.

The vectors dimensions are positionally associated to the nodes of the
given taxonomy, according to any traversal order of the taxonomy. Before
the propagation process starts, each concept-vector is simply initialized by
setting to 1 the weight corresponding to itself, and 0 all the other elements;
i.e., considering the node ¢; in the given hierarchy, the initial concept-vector
of this node is

cv., = [0,0,...,1, ...,0]

where the only non-zero weight is associated with the i-th dimension,
the one associated to the node ¢;. The total number of dimensions is equal
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to the number of the nodes in H(C, F). Then, the process repeatedly en-
riches the concept-vectors of the nodes by enabling neighboring nodes to
exchange concept weights. The propagation of the weights works by adding
to each concept-vector the weights of the neighbour ones (parent and chil-
dren), multiplied by a propagation degree® that sets how much information
has to migrate from one node to the neighbours. This process is iterated
until all nodes are informed of all the others.

Consider, for example, the taxonomy fragment (containing nine con-
cept nodes) presented in Figure 3.1. CP/CV maps each concept into a 9-
dimensional vector (Figure 3.1). Vectors’ elements are associated to the
taxonomy nodes. For example, the root is represented by the vector

(0.450,0.169, 0.141,0.158,0.018, 0.018, 0.018, 0.021, 0.021),

in which the first component (the one associated to the category “world”),
dominates over the others that contribute to the definition of the con-
cepts. The second, third and fourth components reflect the weights of
“asia”, “africa” and “america” respectively in the semantic characteriza-
tion of “world”, while the remaining components represent the weights of
the three descendants of “asia” and of the two descendants of “america”.

World Asia Africa | America | Afgh. Iraq China | Canada US
COworld 0.450 0.169 0.141 0.158 0.018 0.018 0.018 0.021 0.021
Clgsia 0.052 0.469 0.006 0.006 0.156 0.156 0.156 0.0003 0.0003
africa 0.100 0.012 0.873 0.012 0.0006 | 0.0006 | 0.0006 | 0.0007 | 0.0007
CVamerica 0.057 0.007 0.007 0.520 0.0003 | 0.0003 | 0.0003 0.204 0.204
Dafgh. 0.004 0.100 | 0.0002 0.0002 0.872 0.012 0.012 0 0
iraq 0.004 0.100 | 0.0002 0.0002 0.012 0.872 0.012 0 0
CVchina 0.004 0.100 | 0.0002 0.0002 0.012 0.012 0.872 0 0
Ceanada 0.006 | 0.0003 | 0.0003 0.165 0 0 0 0.806 0.023
Chys 0.006 0.0003 | 0.0003 0.165 0 0 0 0.023 0.806

Table 3.1: Concept-vectors associated to the taxonomy fragment in Fig-
ure 3.1.

Once the process is completed, since all the concepts are mapped into
the same vector space, the knowledge expressed by each node is comparable
with all the others; i.e, it is possible to compute semantic similarities of the
concepts by a similarity measure, for example the cosine similarity measure.
In fact, [76] showed that cosine similarity (measuring the angles between the
vectors)

!Note that, in [76], in the absence of any prior or external/corpus-based knowledge, the
authors set the propagation degree based on the pure hierarchy structure (for example, a
concept ¢ with n children will have a propagation degree wrt. its children equal to 1/n)
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$iMeosine (U1, 02) = cos(v1, v3),

leads to highly precise similarity measurement across concepts within
the taxonomy in comparison with other approaches. For example, average
KL divergence (which treats the vectors as probability distributions and
measures the so-called relative entropy between them),

V1,

Y

Agr(1,03) + Arp(05,07) 1 v,
5 = 2;1)21.1092}1‘ + vy,log

3

V2

3

and intersection similarity (which considers to what degree vi and v3
overlaps along each dimension)

Z?:l min(vli ) U2¢)
iy max (v, vy;)

will essentially normalize each dimension, thus they will likely give equal
weight to all concepts, independently of where they occur. Instead cosine
similarity will give more weight to the dimensions with higher values. [30],
on the other hand, showed that KL Divergence performs better than the co-
sine and the intersection similarity in similarity search of hierarchical data,
such as XML. Comparisons against other approaches on available human-
generated benchmark data [49, 129] showed that CP/CV improves concept
similarity measurements in terms of the correlation of the resulting concept
similarity judgments to human common sense. Thus, without loss of gener-
ality, we use CP/CV to measure the semantic similarities between the nodes
in the hierarchy.

STMyntersection (Ul , U2) =

3.1.2 Extraction of Document-Vectors

In this step, given a data corpus D of documents (also referred to as con-
tents), we analyze and extract a representative document-vector for each of
them.

The m = |D| documents are represented with a document-vector in
which each component represents a keyword. As usual, the keyword extrac-
tion includes a preliminary phase of stop-word elimination and stemming.
For the stemming process, we use Wordnet [46].

Therefore, we calculate the weight u; , of the x — th vocabulary term in
j — th document by using the augmented normalized term frequency [136]:

tfi,a:
t fmae
i

Uip = 0.5+ 0.5 -
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where tf; ;. is the term frequency value of the x — th vocabulary term in
t —th document and ¢ f;"** is the highest term frequency value of the i —th
document. In fact, as in the standard TF formula, we try to give credit
to any term that appears in the corpus, but we only add some additional
credit to terms that appear more frequently. In this way we preserve the
keywords that appear less frequently. In fact, too often the most relevant
terms related to a topic (or category, in our case) are specific keywords that
do not appear so frequently in a big corpus of documents: the augmented
normalized term frequency permits us to preserve this information.

Thus, given a corpus document d;, we define the related document-vector
as

Definition 3.1.2 (Document-Vector d)

—

di ={ui1,ui2,..., Uiy}

where v is the size of the considered vocabulary, and u; . is the normalized
term frequency of the x — th vocabulary term in the i — th document.

3.2 Data Association Process

The task of the document association process is to assign (or classify), if it
is possible and supported by the contents, each given data element to one
or more categories (concepts in our case) based on its contents. Document
association problems can be divided into two major categories:

e unsupervised document association, where the classification must be
done without any reference to external information;

o supervised document association, where some external mechanism (such
as human feedback) provides information to improve the documents’
classification process.

Our aim is to associate each document in D to at least one of the con-
cepts/categories of the given taxonomy. In fact, as introduced above, a
taxonomical structure could be seen as a domain categorization structure,
that could also index the related documents and help the user navigate and
search within the contents space.

In this thesis, the association process is based on the two structures
previously defined:
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e concept-vectors: they describe each concept of the taxonomy by quan-
tifying the relationship among the nodes in the original structure;

e document-vectors: they define each document as a set of weighted
keywords.

The main idea behind the association operation is that, while concept-
vectors help us capture and leverage the structural information embedded
in taxonomies, they can also be used to improve the association process.
In fact, each concept-vector defines the related concept leveraging the tax-
onomical structure, and that helps us express the meaning of the category
based on the relationships with all the other concepts in the taxonomy:.

Let us consider for example the meta-data hierarchy fragment in Fig-
ure 3.1: the node “asia” could be naively defined by only considering its
label or, in a more accurate way, we can leverage the relationships expressed
by the structure. We can for example infer that the concept “asia” is re-
lated to (and also defined by) its ancenstors and descentants. Thus, using
the concept-vectors, we also take into account this information; we call the
set of documents that a concept relates to as its association. Therefore, the
concept-vectors assigned to the concept nodes provide a convenient way to
identify associations. In particular, we rely on a association module which
takes as input the set

CV ={ct,...,ct,}

of the concept-vectors representing the taxonomy, and the set

DV = {dvy,...,dvy,}

of vectors representing the documents to be associated. Document-
vectors are defined in the space of the entire vocabulary; each dimension
corresponds to a keyword, and the weights in the vector represent the rel-
evance of the corresponding keyword in the document represented by the
vector.

Thus, the goal of the data association process is to associate the docu-
ments to their best representative concepts in the taxonomy. We capture this
notion of representativeness through the similarity among the concept- and
document-vectors representing the taxonomy concepts and the documents,
respectively. Semantic similarities (at the basis of the association process)
between the concepts and the documents being associated are computed by
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e unifying the vector spaces of the concept-vectors and the document-
vectors. The unification of the spaces consists in unioning the di-
mensions and representing every vector in the new extended space by
setting to 0 the values corresponding to those dimensions that were
not appearing in its original vector space (while keeping all the other
components unchanged);

e calculating the cosine similarity of the resulting vectors in the unified
space.

In the following discussions we will always assume to deal with vectors
sharing the same space. In the next two Sections we analyze two different
association approaches.

Document-to-Concept Association

For every document in the corpus, the document-to-concept association
identifies the taxonomy concepts that best match with it. In other words,
each concept in the original taxonomy is considered as belonging to the as-
sociations of those documents whose similarities with it are above an adap-
tively computed threshold. The association steps are the following:

For each document d; € D:

1. consider the document-vector d{;j

2. compute its cosine similarity wrt. all the concept-vectors describing
the given taxonomy, i.e., the concept-vectors associated to each node
in the taxonomy.

sim(cv;, dvj) = cos(ct;, dvj)
3. sort the concepts-vectors in decreasing order of similarity wrt. dv;;

4. choose the cut-off point to identify the concepts which can be consid-
ered sufficiently similar to justify the association of the object under
them.

Our method adaptively computes the cut-off as follows: It

Algorithm 1 (Adaptive Cut-Off)
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e 1: first ranks the concepts in descending order of match to dzj,
as previously calculated;

e 2: computes the maximum drop in match and identifies the cor-
responding drop point and,

e 3: computes the average drop (between consecutive entities) for
all those nodes that are ranked before the identified maximum drop
point.

e 4: The first drop which is higher than the computed average drop
is called the critical drop. We return concepts ranked better than
the point of critical drop as candidate matches.

At the end of this phase, a document d € D has an association,
Ag—c(cD) defined as

Definition 3.2.1 (Association A, ..(cv))
Vee C,c€ Ag_c(ch) < sim(dad, cUc) > dropg

where sim/(cte, d;d) is the cosine similarity between the document-vector
dvg and the concept-vector cU., and dropg represents the critical drop com-
puted as in Algorithm 1.

Notice that in general the associations of different concepts are not disjoint,
since the same object can be assigned to multiple (similar) concept-vectors.
The number of concepts associated to a given document depends on the
corresponding adaptive threshold value computed by the association algo-
rithm. Notice that, at this point, given all the calculated associations, for
each concept ¢;, we can infer the set of documents associated to it.

Concept-to-Document Association

Depending on the document data and their degree of matching with the
different concept-vectors of the taxonomy, the above association process
may not result in a uniform distribution of documents across the different
associations. In particular, there can be cases where some concept nodes of
the taxonomy do not appear in the list of the “best candidates” (i.e., the
list of concepts above the adaptively computed threshold) for any document.
For such concept node, their corresponding associations are thus empty at
the end of the association process.

These cases might affect the quality of the navigation and search, which
are based on the evaluation of mutual relationships among the associations of
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the concepts. In fact, considering that the taxonomy is usually generated by
a domain expert, we believe that each concept-node in it should essentially
represents a portion of the knowledge expressed by the considered contents
(and if it is not case, the domain expert should basically remove it). Thus,
we also consider a dual, concept-to-document association approach in order
to determine a new association, A._4(c?), that avoids this problem.

The algorithm differs from the previous one only as far as the exter-
nal control loop is concerned: for every concept-vector, the association is
computed by finding the best matching document-vectors.

Again, for each concept ¢;, we dynamically set the relevant documents
related to it by applying the previously reported cut-off (Section 3.2). Thus,
we can define A._4(c?) as

Definition 3.2.2 (Association A._ 4(c0))
Vd € D,d € Aeg(ch) < sim(ct.,dvy) > drop,

where sim(cﬁc,d;)d) returns the cosine similarity between the concept-
vector cv. and the document-vector dvgy, and drop. represents the critical
drop computed as in Algorithm 1.

In the concept-to-document approach, the association of a concept is
empty only if the associations of all the concepts are empty. Thus, in almost
all cases, at the end of this phase, all of the concepts nodes have a non-empty
association. Notice that, once again, associations are not necessarily disjoint,
since the same object can be assigned to multiple (similar) concept-vectors.

3.3 Discovery of Concept-Keyword Relationships

Using the previously described methods, we can associate the documents to
their best representative concepts in the taxonomy. Both methods can be
considered as unsupervised document associations, where each association
has been entirely created just considering the information contained in the
documents and the concept vectors.

At this step, depending on the user needs, we may be interested in im-
proving the quality of the associations through an additional step, where
a relevance feedback mechanism provides more precise information that
can improve the documents classification process. Moreover, this relevance
feedback-based approach allows the system to discover new hidden relation-
ships among the relevant terms (contained in the given corpus of documents)
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and the original concept/categories of the given taxonomy, creating new se-
mantic connections between both input data.

Considering a concept ¢; and its association, we aim to search for the
most contextual informative keywords. For this, we treat each document
in the related association as a bag of words (the keywords extracted from
the orginal text). As discussed in [133], we compute the degree of matching
between the keyword and the concept by treating each document contained
in the association as a positive relevance feedback and each document con-
taing the keyword but not in the concept association as a negative relevance
feedback.

In other words, this phase aims to find those keywords better describing
the concept in the chosen context documents. Therefore, given a concept-
vector and a corresponding association, this process aims to identify key-
words (and their weights) that are significant for the characterization of
the concept in the given context. For this purpose, we treat (a) the node
document-vector as a query and (b) the association set as a contextual feed-
back, and we apply a probabilistic feedback process.

Definition 3.3.1 (Concept-Keyword Relationship) We define the re-
lationship that exists between a keyword k;, extracted from the considered cor-
pus, and a hierarchy concept c;, as the weight u; computed as follows [134):

TZ/(R — T'Z‘)
(ni —ri) /(N —n; — R+1;)

n; —r;

T
R N-R

u; = log

where:

e 1; is the number of document in the association containing the keyword
i

e n; is the number of documents in the corpus containing the keyword i
e R is the cardinality of the association

o N is the number of documents in the collection

Intuitively, the first factor increases when the number of the documents
containing the keyword k; increases, while the second factor decreases when
the number of the irrelevant documents (i.e., not belonging to the considered
association) containing the keyword k; increases. Therefore, keywords that
are highly common in a specific association and not much present in others
will get higher weights. For each concept, we consider all keywords contained
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in at least one document of the concept association that have a positive
weight value. Similarly to association phase, we apply the adaptive cut-off
to this set in order to select the most relevant keywords with the highest
weights that will form the enriching-keyword vector elZvci.

At this point, for each concept ¢;, we have two vectors:

1. the concept-vector cd., representing the concept-concept relationships
in the corresponding taxonomy

2. the enriching-keyword vector, e/gvci, consisting of keywords that are
significant in the current context defined by the corpus.

In order to combine the concept and the enriching-keyword vectors into
a single extended-concept vector, defined as
eCue, = O+ Cle; + Be; - elgvci,

we need to first establish the relative impacts (i.e. a., and ;) of the
taxonomical knowledge versus real-world background knowledge.
Therefore, given concept ¢;, let

e S(cb,) be the set of documents associated to the concept ¢; (i.e. the
documents retrieved from querying the database using the concept-
vector, ¢, ); and

° S (eEvCi) be the set of documents obtained by querying the database
using the enriching-keyword vector, ekv;.

We quantify the relative impacts, a,, and 3.,, of the concept and enriching-
keyword vectors, ¢t., and ekv,,, by comparing how well S(ct.,) and S(ekv,,)
approximate Dg_.(c0.,). In other words, if

o C., = Dg_.(cb.,) N S(ct,,) and
e EK. = Dg_.(che,) N S(ekvy,),
then we expect that

Hacz-'@ciH _ ‘Ccz|

Be, 'elngiH |[EKc,|

If the concept and enriching-keyword vectors are normalized to 1, then

we can rewrite this as
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Qe; _ Ce,|
Be,  |EKe|

Also, if we further constrain the extended concept vector ecv., to be also
normalized to 1. Le.,

=1,

Haci - CU¢; + Be, - ekve,
then, solving these equations for o, and f3.,, we obtain:

e
T Cal ¥ 1EE)

[EK|

(0% I v ———
‘ |Ces| + [EKe,|

and [, =
Thus, given concept, ¢;, we can compute the corresponding extended
concept vector as

ecve; = _Cal - CUe; +
|Ceil + [EKL,]

|EK |

I —— €E’U .
Cel + BR[|

Since, at this point, each concept in the original taxonomy has its own
extended concept vector ecv, the documents in the given corpus can be
associated under these nodes, but using ecv vectors instead of ¢i vectors.
Again, depending on the needs, we can select the most suitable association
methods between the two approaches presented above. In this manner,
using the extended vectors, we are able to associate to each concept not
only the documents that contain that concept name, but also the documents
containing some of the contextually relevant concepts and keywords.

3.4 Experimental Evaluation

In order to prove the efficacy of these pre-processing operations on meta-
data hierarchies, in this Section we analyze the benefits of applying these
techniques on taxonomical structures. In particular, as proposed in [21],
we study the advantages of using a context-aware enrichment (from the
considered corpus) of the structural information (dictated by the hierarchy
itself) to better describe the meta-data knowledge. In fact, given a meta-
data structure, it is important to describe its knowledge taking into account
not only the hierarchical structures but also the context in which they will
be used.

Moreover, we argue that the advantages of a pure structure-based meta-
data knowledge definition (as the CP/CV algorithm, originally proposed



48 CHAPTER 3. DEFINITION OF THE META-DATA KNOWLEDGE

Motor vehicle Q
O O O
/ N\ VAR
© © 000

minibike trail bike sedan taxi

Motor vehicle Q
motorcycle / J truck \

O O O
/| /LN

OO OO O

minibike  trail bike sedan

Figure 3.2: Two meta-data hierarchies about “motor vehicles”.

n [76] and described in Section 3.1.1) can be positively combined with a
context-informed knowledge definition. In fact, the method described in
this chapter not only formalizes the structural information coded by the
hierarchical structure (concept-vectors described in Section 3.1.1) but also
leverages them to infer contextual extensions (as document associations,
Section 3.2) of the concepts. This approach can help resolve conflicts and
mismatches that might arise if only structural aspects are considered.

Thus, we prove our association-based meta-data definition by evaluating
the capacity of our method to disambiguate the nodes contained in the given
hierarchies. In other words, given two meta-data hierarchies, we believe that
a good meta-data knowledge formalization approach should be able to define
each node in such a way to recognize, if there are, similarities/dissimilarities
among different meta-data structures, and recognize where they match and
where they differ.

For example, let us consider the meta-data hierarchies presented in Fig-
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ure 3.2; even if they represent the same domain knowledge (about “motor
vehicle”), they report the same contents with different labels. Therefore,
we believe that an effective definition of the meta-data information should
permit to highlight where (and if) they represent the same content knowl-
edge. For example, the concept nodes “taxi” and “cab” represent the same
entity; thus, an effective meta-data knowledge representation should permit
to identify these correspondences.

In order to prove these assumptions, we evaluate the benefits of using
a context-informed meta-data definition for meta-data disambiguation pur-
poses by studying the differences against pure structural taxonomical defi-
nition approaches. In particular, given a meta-data structure, we formalize
its knowledge by using the approach described in Section 3.2; thus, after the
taxonomical vectorization (Section 3.1.1), we leverage these concept-vectors
to associate to each meta-data node a set of documents that best describe
them. Then, we compare the proposed association-based meta-data knowl-
edge definition (called in the experiment Class) against two pure structural
meta-data node definition techniques:

e CP/CV which, as described in Section 3.1.1 formalizes the meta-data
knowledge by associating to each taxonomical node a concept-vector
that describes its structural relationships with all the other nodes in
the meta-data hierarchy;

e common-ancestor distance (Anc), which defines each meta-data node
by taking into account its distance from all its ancestors in the hierar-
chy (i.e., each node is defined by its counting the distance wrt all the
ancestors in the hierarchy).

Then, we perfomed several evaluation experiments by considering a meta-
data hierarchy extracted from DMOZ2. The considered hierarchy has 72
nodes, depth 4, and different branching factors in its internal nodes (the
average value is 5.14). Then, we classify 17420 article abstracts describing
NSF awards for basic research 2.

To evaluate the effectiveness, in terms of disambiguation capacity, of
the proposed association-based meta-data definition strategy, in the pres-
ence of different conditions, we then created several (and similar) other
hierarchies to be matched against. Thus, considering the original meta-
data hierarchy extracted from DMOZ, we create alternative structures to

2accessible at the link http://www.dmoz.org/Science/

3http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
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be matched against, by introducing controlled distortions to the original hi-
erarchy. These distortion permit to maintain the structure of the considered
meta-data hierarchy but introduce small modifications of the concept nodes;
in particular, we introduce the following distortions:

e synonyms : we randomly pick a percentage of nodes and relabel their
concept names with other terms (without affecting the structure of
the hierarchy). Note that the new labels are actually random (i.e.,
not real English synonyms) and do not actually occur at all in the
data corpus. This constitutes a worst case situation for association-
based algorithms (that also leverage the node labels for classification
purposes).

e Homonyms: we randomly picked a percentage of nodes and, for each
of them, we introduced a replica in randomly selected positions of the
other meta-data hierarchy. The replica has the same concept name,
but it is contextualized in a different position in the structure of the
hierarchy (i.e., it is a homonym).

Considering these two conditions, we applied distortions of the order of
20% and 40% of the nodes. Thus, the main aim of the experiment is to prove
that, leveraging the association-based definition of the nodes, it is possible
to positively retrieve in the alterated hierarchy, the corresponding node.

Figures 3.3(a) and (b) show the synonym matching results. In this Fig-
ure, the X axis denotes the nodes and Y axis denotes the rank at which the
corresponding node, in the distorted meta-data hierarchy, is found. Note
that if the alignment algorithms works perfectly, then these distortion op-
erations would not have any impact and all nodes will be found at rank
1.

e For the 20% distortion case (Figure 3.3(a), the portion relabeled is
on the right), we observe that Class (which identifies the proposed
association-based meta-data knowledge definition) is always able to
retrieve the corresponding nodes in the compared structure (100% of
exact matches). On the other hand, Anc (which identifies the meta-
data knowledge definition based on the edge distance among the hi-
erarchy nodes) makes some mistakes when also an ancestor node is
relabeled (86.3% of exact matches). However, CP/CV-based formaliza-
tion approach defines each node in such a way to be able to always
retrieve, for non-relabeled nodes, the corresponding nodes in the al-
ternative hierarchy but (since it relies on the concept labels to some
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Figure 3.3: Matching results under concept re-labeling (rank=1 indicates an

exact match).

degree) performs imperfectly for re-labeled nodes (88.3% of correct
matches).
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In short, while our meta-data formalization method is also based on
the concept-vectors, Class improves the results by leveraging available
document associations.

e On the other hand, when 40% of the nodes are arbitrarily relabeled
(Figure 3.3(b), the portion relabeled is on the right), the impact on the
performances are significant: in fact, Anc makes significant errors (only
42.2% of exact matches). However, CP/CV works very well for non-
relabeled nodes and performs imperfectly for re-labeled nodes (totally
64.8% of exact matches). In contrast, Class performs very well even
in this heavily distorted situation (83.4% of exact matches).

Figures 3.4(a) and (b) show the matching results in the presence of multi-
ple concepts with identical labels. Figure 3.3(a) presents the matching ranks
for the corresponding nodes in the altered hierarchies, while Figure 3.3(b)
shows the matching rank for the new inserted homonyms. Note that, for the
former case, the closer to 1 the rank, the better are the results; whereas, for
the homonym case, the further from 1 the ranks, the more discriminating is
the algorithm. In fact, in this second case, further from 1 the ranks, better
the formalization method permits to distinguish among the homonyms.

e For self-matching cases (Figure 3.4(a)), since the node-copy distortions
do not affect any internal nodes, Anc works perfectly (100% of exact
matches). On the other hand, CP/CV, which gets structural context
also from descendants, introduces some errors (rank 2 instead of 1)
but it is still able to retrieve the majority of corresponding nodes in
the alternative structure (78.5% of exact matches). Class, however,
works well (91.2% of exact matches) unless the concept does not occur
in the corpus at all (these cases are marked with Q).

e For homonym-matching cases (Figure 3.4(b), we observe that Class
works the best (puts the homonym furthest away from rank=1), whether
the concept occurs in the corpus or not. In both cases, while the
original concept is able to leverage the context provided by its neigh-
borhood to classify documents, the arbitrarily picked context of the
copy does not classify similar documents and homonyms are clearly
identified.

Thus, the experimental evaluation showed that a properly context-informed
meta-data definition can greatly help disambiguate the meta-data contents,
enriching the structural information with corpus content knowledge. In fact,



3.4. EXPERIMENTAL EVALUATION 93

Node-copy Distortion (40%)
self-match results
100 ‘
¢ Class
= Anc
x Cp/Cv
© O not-in-text
14
o
£
§ 10
© ®
E ‘ © ®
"?—, @e 3 .
»n ®® O ® ®
. @E® ® : ©® e @®
1 @w\@z}vwwwwwuwwwv@lwww\@vwwww‘@é}l@@lﬂwu\@kuwwwmwm@@
NODES WITHOUT COPY NODES WITH COPY
Node
(a)
Node-copy Distortion (40%)
homonym-match results
100 ;
= s Class CRCIRSORONRORC OJOC
©
;’ = Anc !
£ Cp/Cv 3 .
S O not-in-text !
- :
g 10 - ECR
. ' - -
Eﬁ ¢ (O} ]
g on
E | ]} | ]} SEEEEEEEEEER
:o: 3 EEE ] ® ase
1 U
NODES WITHOUT COPY COPY NODES
Node

Figure 3.4: Matching results under homonyms (for (a) rank=1 indicated
perfect match while for (b) it is better to have match rank > 1.

a pure structural based knowledge definition can not guarantee these dis-
ambiguation performances, and poorly performs even when the similarities
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among the considered structures are clearly evident.



Chapter 4

Adaptation of Hierarchical
Meta-Data for Textual
Documents’ Management

Hierarchical meta-data structures can play a central role in the annotation
and retrieval process of large data sets. From the viewpoint of knowledge en-
gineers, meta-data embody formalized knowledge, which can be understood
and reused by others. They are generally developed (or extracted) by human
domain experts and represent a structured knowledge easily understandable
by human users.

Generally, a better choice for an engineer is to reuse existing hierarchical
structures rather than develop a new one from scratch, due to the fact that
the domain knowledge definition could be a hard and time consuming task
and it is often impossible to define a proper meta-data hierarchy for each
considered data set. Moreover, even when the web communities are able to
provide suitable hierarchies (in the last few years the interest in such field
is increasing due to the emerging necessity of data organization), they are
usually too detailed or they simply don’t reflect the real distribution of the
data. In fact when developers distribute a meta-data structure for a partic-
ular domain, this is usually very detailed because their aim is to provide a
deep, as precise as possible, knowledge about the considered domain without
any optimization for its final usages.

For example, depending on the context, an application can need a vari-
able number of concepts (and related information) per meta-data or different
organization about their relationships. Thus, this meta-data reuse generates
a new question: is there a feasible approach to extract a meta-data structure

55
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from existing ones?

Considering this problem, we proposed in [24] a new method for extract-
ing knowledge from an existing hierarchical meta-data structure to produce
an abridged version for a particular user (or users) and task (or tasks). In
fact, given a general meta-data hierarchy, our work defines a new method for
extracting the most relevant information from it by analyzing the original
data and removing the redundant information from the considered structure.
Moreover, the method re-defines the internal relationships among nodes in
order to reflect as much as possible the real data distribution, avoiding (if
present) redundancy and returning a structured knowledge that best rep-
resents the considered data set. Our method also permits to set the detail
level requested by the user, thus allowing to select how much data can be
preserved in the final structure.

In the next Sections we formalize these ideas based on the preliminary
notation introducted in Chapter 3, and apply them on datasets consisting
of collections of textual documents.

4.1 Preliminary Motivations

While there are many strategies for organizing text documents, hierarchical
categorization —usually implemented through a pre-determined hierarchical
meta-data structure— is often the preferred choice. In fact, hierarchical meta-
data embody formalized knowledge easily understandable by human users
and define relationships between concepts in a given domain.

In a hierarchy-based information organization, each category can index
text documents that are relevant to it, facilitating the user in the navigation
and access to the available contents. For example, an on-line educational
site needs to present resources in a compact and understandable structure
to help the user locate resources relevant to her interests and this task can
be positively realized by using a hierarchical structure (Figure 4.1).

Unfortunately, given a set of text documents, it is not easy to find the
appropriate categorization that best describes the contents. In fact the
available hierarchical meta-data are usually designed for broad coverage of
concepts! in a considered domain, failing to reflect important details (within
the users’ foci of interest) expressed by the considered data set. Especially
in dynamically evolving domains, it might be the case that the available
hierarchies do not necessarily reflect the content knowledge. For all these
motivations, when developing a taxonomy, a better choice for an engineer

n this thesis, we will use the terms “concept” and “category” interchangeably.
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Figure 4.1: A scientific categorization example (used by NSF’s National
Science Digital Library web site, http://nsdl.org) to organize digital re-
sources.

could be to investigate and reuse existing taxonomies rather than develop
a new one from scratch (that would need a non-trivial analysis of the con-
sidered contents). In fact, depending on the context, the user can need a
variable number of nodes (and related information) per taxonomy and dif-
ferent semantical relationships among the considered categories in order to
facilitate particular search tasks.

Based on these considerations, in this thesis we introduce a new
method [24] for distilling a meta-data hierarchical domain categorization
from an existing one, based on a given set of text documents that have to
be represented and indexed by the distilled taxonomy.

Note that any adaptation of a hierarchy— whether by adding new concept
nodes or by collapsing and summarizing unnecessary details of it — implies a
distortion of the original structure. But as long as this distortion is aligned
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with the considered contents, it could not imply any loss of expressivity of
the hierarchy or limit effective access to the underlying text content. In
contrast, as long as the distortion is limited to where it matters, it will help
improve effectiveness of search and navigation.

For all these purposes, we recognize that the primary role of a taxon-
omy is to describe or narrate the natural relationships between concepts in
a given domain to its users. Therefore, a contextually relevant adaptation
of a taxonomy should essentially distill and manipulate the structure of the
existing taxonomy by appropriately segmenting and, if needed, summarizing
this narrative relative to the documents in a given corpus. Based on this key
observation, we propose A Narrative-based Taxonomy Adaptation method,
ANTITA, our hierarchical meta-data structure distillation approach for adapt-
ing existing taxonomies to varying application contexts. In particular, we
introduce:

e The narrative view of a taxonomy: we view a taxonomy as a discourse
introducing the general domain topics (the higher-levels of the taxon-
omy) and then going into further details (lower levels in the hierarchy).
As described in Section 4.2.1, we transform each category in the orig-
inal taxonomy into a sentence by associating to each concept a vector
of weighted related terms extracted from the corpus. Then, we order
these sentence-vectors (Section 4.2.1) in such a way to reflect both
the semantical relationships among the categories and the structural
constraints expressed by the hierarchy.

e The segmentation of the narrative: this narrative, which preserves
the structure of the taxonomy (e.g., structural-relationships between
the concepts), is then segmented based on a narrative-development
analysis, highlighting where the narrative significantly drifts from one
topic to another (Section 4.2.2).

e The re-construction (or distillation) of an adapted tazonomy based on
the segmentation results: the resulting narrative segments (each de-
scribing a group of concepts/categories that collectively act as a sin-
gle topic) are re-organized into a hierarchical structure, linking each
concept-segment to others that are structurally related to it (Sec-
tion 4.2.3).

The result of the above process is a contextually-relevant adapted meta-
data structure, where details are highlighted where they matter and sup-
pressed where they do not support the current context. In Section 4.4, we
evaluate the proposed scheme using different text collections.
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4.2 Narrative-Driven Meta-data Adaptation

Given an input hierarchical meta-data structure H(C,E) where C =
{c1,...,¢n} is the set of n concept nodes (or categories) and E is the set
of structural edges, our goal is to create an adapted taxonomy H'(C’, E'),
based on a given context defined by a corpus, D, of text documents. As
mentioned before, ANITA relies on a “narrative” interpretation of the input
taxonomy to achieve this goal; unlike the original taxonomy, which is hier-
archical, the narrative is linear in structure. However, it is created in such
a way that the structure of the narrative corresponds to the structure of
the hierarchy. More specifically, the scope of each concept (represented as
a sentence) is contextualized by those that precede and follow it, and this
contextual scope corresponds to both the structural information (coming
from the original structure) as well as the content of the considered corpus.
Experiments reported in Section 4.4 show that ANITA is able to leverage
this narrative to improve the effectiveness of the adaptation process with re-
spect to more generic clustering-based approaches, which cannot represent
the structural context.
As described before, our method consists of three steps.

1. In the first step, we analyze the input hierarchy to obtain a narrative
view that reflects the structural relationships between the concept-
nodes in the hierarchy.

2. In the second step, we analyze the narrative to identify boundaries
of coherent segments where the narrative drifts from one topic to an-
other. Intuitively, each of these topics are sets of concept-nodes that
are focused around a central concept in the current context.

3. Finally, the last step re-constructs an adapted hierarchical meta-data
structure based on partitions of nodes returned by the previous step.
Each partition is represented by a unique label that represents the cen-
tral concept and these are organized in a tree structure which preserves
the original hierarchy as much as possible.

In the next Sections, we present the details of each of these steps.

4.2.1 Step I: Narrative View of a Taxonomy

In this Section, we first introduce the narrative interpretation and then
describe the taxonomy adaptation process in detail.
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Step Ia: Concept-Sentences

Whereas a taxonomy is a hierarchy of concept-nodes, a narrative is a se-
quence of sentences. Therefore, in order to create a narrative corresponding
to the taxonomy, we need to map concept-nodes of the input taxonomy into
concept-sentences. What we refer to as concept-sentences are not natu-
ral language sentences, but vectors obtained by analyzing the structure of
the given taxonomy and the related corpus of documents. Intuitively, these
sentence-vectors can be thought of as being analogous to keyword-vectors
commonly used in representing documents in IR systems.

Concept-sentences associate to each concept a coherent set of semanti-
cally related keywords, extracted from the associated text corpus. Thus, for
each concept ¢; in the considered hierarchy, we associate a sentence-vector
50, as

SVe; = {wi,lv Wi,2, Wi 3" - wi,v}

where v represents the total number of considered terms (the corpus vocabu-
lary and labels in the taxonomy), and w; ; is a weight quantifying the degree
of the semantical correlation between the j-th term and the i-th taxonomi-
cal concept. Table 4.1 reports the sentence-vectors, related to the taxonomy
fragment shown in Figure 4.2, which include concepts from the taxonomy
as well as keywords from the data set.

Concept-sentences can  be  obtained in  many  different
ways; [25], [32], [147] propose various approaches that leverage se-
mantic similarities between concepts in a given context for obtaining such
vectors. In [32], the authors model the context of a certain term as a vector
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SVscience {science, student, education, physics, teacher - - -}
SVenviron. {environment, science, ecology, energy, earth - -}
SUphysics {physics, quantum, particle, mechanics, theory -- -}
SVpiology {biology, energy, genetic, cell, ecology, student, biochemistry - - -}
SVenergy {energy, environment, electromagnetism, thermodynamics, conservation - - - }
SVoptics {optics, physics, light, science, radiation - - - }
SVmechanics {mechanics, physics, force, science, quantum- - - }
SVtozicology {toxicology, biology, department, student, science - - -}
SUmedicine {medicine, safety, disease, science, policy -- -}
SUnuclear {nuclear, cell, power, physics, particle - - }
SVelectromag. {electromagnetism, interaction, physics, science- - - }

Table 4.1: (a) The sentence-vectors (s?), referred to the taxonomy fragment
in Figure 4.2, obtained applying the method described in Section 3.3 using
the NSF document set (described in Section 4.4). The sencence-vectors are
ordered based on the corresponding weights which are omitted in the figure
for clarity. Terms that are not in bold are picked from the NSF document
COrpus.

representing syntactic dependencies which are automatically acquired from
the text corpus with a linguistic parser. On the other hand, in [147], the
authors describe an unsupervised WordNet-based system that is able to
determine the meaning of a term by analyzing semantic relatedness with
respect to the most related terms in the considered context.

In this thesis, we use our approach presented in [25] and described in
Section 3.3 to associate to each concept a keyword-vector (also called ex-
tended concept-vector), that tightly integrates terms extracted from text
documents and labels of concepts obtained from the considered domain tax-
onomy. This approach leverages the structural domain knowledge (analyzing
the structural relationships among the concepts nodes) to associate to each
concept a set of relevant text documents from the considered corpus. Then,
it is possible to leverage these associations to extract a relevant set of terms
semantically related to the considered concepts. Thus, the resulting vectors
reflect both the structural context (imposed by the meta-data hierarchy)
and the documents content (imposed by the corpus).

Step Ib: Sentence Ordering

As we mentioned earlier, we recognize that the primary role of a meta-data
structure is to describe or narrate to its users the natural relationships that
exist among the considered concepts in a given domain. Thus, after the
vector-based encoding of the concept-sentences, the next step is the creation
of the narrative by ordering these sentences (therefore the nodes in the
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original hierarchy) in an order representing the structure of the taxonomy.

Ancestor-Descendant Ordering. We consider three different narrative
orders: the pre-order, parenthetical and post-order traversals of the taxon-
omy.

e Pre-order Traversal of the Tazonomy: a hierarchy (especially a concept
hierarchy) is structured in a way that the most general concept is used
as the root of the hierarchy and the most specific ones are the leaves.
In a sense, each node provides more specialized knowledge within the
context defined by all its ancestors. We leverage this aspect to define a
narrative in which the sentences associated to the nodes of the taxon-
omy are read in pre-order; i.e., each concept-sentence is immediately
followed by its detailed description in terms of its specializations.

e Post-order Traversal of the Taxonomy: this traversal generates a nar-
rative in which the different concepts are presented bottom-up: after
presenting the most specific concepts, their super-concept is narrated.
Any super-concept presented after the narration of its children can be
seen as summarizing the description of its sub-concepts.

o Parenthetical Traversal of the Tazonomy: intuitively, the parenthetical
traversal is analogous to a narrative where each passage is presented
with an introduction and goes in details until a general conclusion. In
parenthetical traversal of the tree, each parent node is visited twice,
representing both the general introduction and the conclusion to the
argument that the children specialize.

Distance-Preserving Sibling Ordering While pre-order, post-order
and parenthetical traversal of the tree help us decide in which order an-
cestors and descendants are to be considered, they do not help us choose
the order in which the siblings in the hierarchy are to be concatenated in
the narrative.

Let us consider a node ¢y with m children {¢1,¢2--- ¢y }. Our primary
goal is to ensure that the narrative is ordered in a way that reflects the sim-
ilarities — or dissimilarities — among these m siblings (as well as their parent
¢p). In fact, in a narrative, each argument is introduced by smoothly contex-
tualizing its topic (reporting earlier sentences that introduce it) and drifts
to the other topics by introducing and defining the context of the next argu-
ment. Therefore, each node should be anticipated by the concept that best
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biology | medicine | toxicology biology Trst
blol(?gy 0 0.4 0.2 toxicology || 2rth
medicine 0.4 0 0.2 medicine 3nd
toxicology 0.2 0.2 0

(a) (b)

Table 4.2: (a) The dissimilarity matrix M obtained using the sentence-
vectors for the concept-nodes “biology”, “medicine” and “toxicology” and
(b) the MDS-ordering of the children of “biology”.

introduces it and followed by the node that can best specialize its knowl-
edge. For example, in Figure 4.2 “biology” has two children, “tozicology”
and “medicine”; if “biology” is more semantically related to “medicine” than
“toxicology”, we would like to order the narrative in such a way to preserve
this information.

For this purpose, we first compute the dissimilarity matrix M based on
the sentence-vectors corresponding to all m + 1 concepts (the parent and
the m children); in other words,

MTi][j] = 1 — cos(s¢;, s, )

where the function cos measures the cosine similarity between the two
vectors. We then use a distance-preserving embedding technique to map
these concepts onto a one-dimensional ordering. In particular, without loss
of generality, we use multi-dimensional scaling (MDS [154]), to embed
the concepts onto a 1-dimensional order. MDS works as follows: given as
inputs (1) a set of IV objects, (2) a matrix of size N x N containing pairwise
distance values and (3) the desired dimensionality k£, MDS tries to map each
object into a point in the k-dimensional space in such a way that a stress

value, defined as
Zij(dg T dij)2
stress = o
\/ 2 4

where d; ; is the actual distance between two objects o; and o; and d;j is
the distance between the corresponding points in the resulting k-dimensional
space, is minimized. Therefore, by providing as input N = m + 1 concepts
and k = 1 target dimension, the resulting order of concepts would preserve
the semantic ordering between the concepts as best as possible. Notice that,
due to the special nature of the node ¢g (it is the parent), we need to make
a minor modification in the MDS algorithm: in particular, we constrain the
stress minimization process in a way that forces the position of ¢y at the
beginning of the list. This way, the resulting order of the children concepts
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will reflect the concept similarities with respect to the position of the parent
concept in the narrative.

As an example, let us re-consider the taxonomy fragment presented in
Figure 4.2. In order to decide in which order the children of “biology”,
“medicine” and “toxicology”, should be included in the narrative, we first
calculate a dissimilarity matrix, Mp;oiogy, of these three nodes (Table 4.2(a)).
Then, we apply the (slightly modified) MDS algorithm to obtain the ordering
of the children with respect to the parent (Table 4.2(b)): first “tozicology”
is included in the narrative and, then, “medicine”.

Figures 4.3(a),(b) and (c) show the three distance preserving ordering
approaches.

4.2.2 Step II: Segmentation of the Narrative

At this point the narrative is a sequence of sentences (or more precisely
sentence-vectors), each including the information coming from the structural
knowledge (hierarchy) and the context knowledge (documents), defining a
global discourse that covers all the topics addressed by the taxonomy, ac-
cording to the knowledge expressed by the contents. In this step, we analyze
this narrative to identify segments (or partitions) that are highly correlated.
The idea is that if, in the given corpus, two concepts are highly correlated,
they may not need two separate nodes in the adapted meta-data hierar-
chy. In contrast, if there is a significant difference between two portions of
the narrative, then these two portions (or segments) do necessitate different
concepts in the resulting meta-data hierarchy.

In the literature, there are various techniques for segmenting a narrative
into coherent units. Many authors proposed various techniques for segment-
ing texts into multi-paragraph units that represent passages or subtopics;
the methods are based on lexical co-occurrence and distribution analysis.
Some of these techniques, such as [119, 45] rely on the analysis of the topic
evolution within the narrative to decide the positions of segment bound-
aries. Textile [59, 58] and Vectile [74] algorithms, for example, plot similarity
scores (based on lexical co-occurrence and distribution analysis) of neigh-
boring portions of the text. The dips (i.e., local minima) in the resulting
similarity curve correspond to regions of the text where there is significant
change in the content. Therefore, these dips are identified as text segment
boundaries.

In order to partition the narrative si1, s¥s,...,Sh, into coherent seg-
ments, we use a similar strategy. However, instead of searching for local
minima of similarities, we seek partitions that correspond to similar in-
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Figure 4.3: The narrative order (denoted by the circled number) for the
hierarchy presented in Figure 4.2 based on a distance preserving pre-order,
(b) distance preserving post-order and (c) distance preserving parenthetical
ordering approach.

ternal coherence (defined in terms of the total amount of internal topic
drift):

1. Given the narrative (i.e., ordered sequence of sentence-vectors), we first
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Figure 4.4: Narrative-based adaptation of the meta-data fragment presented
in Figure 4.2: based on the structural constraints and the available contents,
the meta-data nodes are grouped in 4 partitions.

compare each pair of neighboring vectors, s0; and st; 41 (1 <i <n—1)
by computing their dissimilarities:

Ajiy1 =1— cos(svi, SUit1)

2. The sequence of vectors is then analyzed for topic drifting. We
say that a topic drift occurs for a given segment of the narrative
when the degree of change between its starting and ending points
is above a given threshold. If Seg;; denotes a segment from the
vector s; and sb;, the corresponding degree of drift is defined as

drifti; = > h_; Dkp+1-

A segment §; ; is said to be coherent if it holds that drift; ; < Amaa,
where A\jae = dmf% is the coherence threshold, and k is the target

size of the summarized taxonomy?.

At the end of the process, we obtain a set of segments, or partitions,
P ={Py, Py, , P} that represent sequences of coherent narrative compo-

2Note that the value of k can be set by the user/application depending on the visu-
alization constraints (how much information can be shown in the display) and/or users’
preferences
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nents. Note that, each partition is a sequence of concepts from the original
taxonomy and defines a single concept in the revised taxonomy.

Let us consider again the taxonomy presented in Figure 4.2; based on
the NSF data corpus (described in Section 4.4), the meta-data hierarchy is
partitioned in four groups of nodes (Figure 4.4). Note that the segmenta-
tion process can alter the structure of the hierarchy, since the relationships
among concepts could change from one domain to another one. In fact,
in popular/scientific magazine context, two concepts as “nuclear” and “en-
vironment” will result strongly related, while in the context of a scientific
professional journal, the concept “nuclear” could be rigorously related to the
concept of “physics” (in fact, as shown in Figure 4.5, considering the NSF
awarded abstracts, “nuclear” has been connected to “physics”). Therefore,
considering the knowledge expressed by the domain experts in the original
taxonomy, ANITA tries to preserve the original relationships among concepts,
but alters the structure when there is sufficient evidence in the corpus that
a different structure would reflect the content better.

Notice from Figure 4.3(c) that the parenthetical traversal introduces
each parent concept twice; in this case, if a parent node is associated to two
different partitions, it is removed from the partition whose drift value (with
respect to neighbor nodes in the sequence) is higher.

4.2.3 Step III: Hierarchy Distillation from the Partitions

In order to construct the adapted meta-data hierarchy from the partitions
created in the previous step, we need to re-attach the partitions in the form
of a tree structure. Furthermore, for each partition, we need to pick a label
that will be presented to the user and will describe the concepts in the
partition.

Step IIla: Partition Linking

The adapted taxonomy, H'(C’, E') with C" = {¢}, ..., ¢} (where each node
¢; represents the partition P;) should preserve the original structure of
H(C, E) as much as possible. Thus,

e The root of H' is ¢yo0t (1 < root < k) such that the corresponding parti-
tion P,,o¢ contains the root node of H.

e Let us consider a pair, P; and Pj, of partitions in P. The decision on
whether (and how) the corresponding concepts ¢; and ¢; should be con-
nected is based on the following analysis. Let F; ; be the set of edges in E
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Figure 4.5: Meta-data hierarchy reconstruction process: based on the par-
titions shown in Figure 4.4 (a) the meta-data hierarchy is recostructed by
linking the partitions to each other. Finally, each partition is labeled by
selecting a representative label.

linking any concept in P; to any concept in P;. Similarly, let E;; be the
set of edges in E linking any concept in P; to any concept in F;. With
the goal of preserving to the best the structure of H, we measure the
strength of the structural constraints implied by F in H, and we propose
as our solution the adapted taxonomy which maximally preserves such
constraints.

Let e = (cq, ) be an edge in H that connects two different partitions P,
and Pj (i.e. cq € P;, ¢y € Pj). The strength of the structural constraint e,
strength(e), (i.e., the strength of the structural constraints induced by e)
is 1 + dp, being d the number of descendants of ¢, in H that also belong
to Pj. Based on this, the decision of having the corresponding ¢ as the
ancestor of c;- is supported by the strength of the structural constraints
associated to the edges in Ej ;.

Thus, the taxonomy H’, is constructed by maximally preserving such
constraints as follows:

1. create a complete weighted directed graph, Gp(Vp, Ep,wp), of par-
titions, where

® VP = P7
e FEp is the set of edges between all pairs of partitions, and
o wp((PP) = Yoeps, , strength(c);

2. find a mazximum spanning tree of Gp rooted at the partition Pyt
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strength of the structural constraints among the partitions
partition 1  partition 2  partition 3  partition 4
partition 1 - 0 0 0
partition 2 2
partition 3 3
partition 4 3

- 0 0
2 - 0
0 0 -

Table 4.3: strength of the structural constraints among the partitions shown
in Figure 4.4. These values reflect the number of edges that will be broken
if two partitions will be not directly linked to each other.

For example, let us consider the taxonomy fragment and its partitions
shown in Figure 4.4. In the adapted hierarchy (Figure 4.5), ANITA picks as
root the partition containing the root node (“science”). Then, the remaining
three partitions have been attached to it by analyzing the constraints given
by the original edges.

In fact, considering the partitions shown in Figure 4.4 and the structural
constraints imposed by the hierarchy (dictated by the edges of the taxon-
omy) the partition containing the concept “physics” (partition 3) could be
attached to the partition 1 (containing the node “science”) or the partition
2 (containing the concept “envirnoment”). But, as shown in Figure 4.5, our
linking approach decides to attach the partition 3 to the partition 1 because
the strength of this correlation is higher than the one with partition 2 (3
structural constraints vs 2). In Table 4.3, the strength of all the structural
constraints among the partitions retrieved in Figure 4.4 is shown.

Step IIIb: Partition Labeling

In order to select a representative label for each partition we need to analyze
the obtained partitions in the context of the original structure. If there is a
concept ¢; € P; that dominates all the other nodes in the partition (i.e., V¢; €
P;  ¢; is a descendant of ¢;), then the label of ¢; is selected as the label of
c,. If there is no such single node, then the minimal set D; of nodes covering
the partition P; (based on H) is found, and the concatenation of the concept
labels in D; is used as the partition label. Intuitively, a concatenation implies
that, in the given document context, these corresponding concepts are found
to be not sufficiently distinguished from each other. On the other hand, any
label that was in the original taxonomy, but is not included in the new
taxonomy is found to be unnecessary in the new context.

Again, an example of the label strategy (referring to the partition shown
in Figure 4.4) can be seen in Figure 4.5.
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Figure 4.6: Scientific taxonomy fragment extracted from DMOZ.

4.3 Case Study

At the end of these steps, we are able to adapt a given hierarchical cate-
gorization in order to properly represent the knowledge expressed by a set
of text contents. In this Section, in order to better explain the proposed
method, we provide an example of adaptation of a given hierarchical meta-
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data structure to a corpus of text document.

Let us consider the hierarchy fragment of a scientifical categorization
in Figure 4.6 that can help a user navigate the abstract articles in the
dataset consisting of the scientific abstracts from National Science Foun-
dation. Applying the proposed narrative-based adaptation algorithm, we
can now adapt the categorization as show in Figure 4.7 to the considered
corpus, compacting redundant information and helping the user navigate
the considered documents.

In this example, the granularity of the considered hierarchy is now re-
duced from 29 concepts to only 16 concepts (obtained by using k = 16,
randomly choosen, and parenthetical ordering approach); a brief overview
on the resulting structure highlights two important aspects:

e the most visible reduction has been obtained at the lowest level of the
hierarchy (the leaves);

e the lenght of some node labels increased considerably (they have been
merged to other labels).

These two aspects allow us to make some general considerations about
our method and our assumptions. In fact, as explained in the introduc-
tion, we believe that any pre-determined hierarchical meta-data structure
is generally developed in order to widely describe the considered domain
knowledge. In order to do that, many un-necessary details (the degree of
redundancy or overabundance varies depending on the application usage
context) are introducted in the structure by adding concept nodes at the
lowest levels of the hierarchy: in fact, if the highest internal nodes represent
very general concepts that most of the domain experts probably share, the
leaves represent details that can be interpreted or reported differently de-
pending on the domain expert that defines the meta-data structure. Thus,
our assumption is that, if these concepts can be superfluous or even redun-
dant, it is possibile to re-define them (or even remove them) depending on
the application usage context.

In fact, in the reported adaptation (Figure 4.7), we can easily notice that
the internal nodes remain basically unchanged, while the most significant
structural modifications have been performed on the leaves. For example, in
the adapted taxonomy, the original categories “pharmacology”, “mathemati-
cal chemistry”, “geochemistry”, “electrochemistry” have been collapsed and
merged with their parent node “chemistry”, representing them as a unique
topic (the root of this sub-tree was selected as representative). Therefore,
in this case, this decision has been supported by the corpus of documents
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Figure 4.7: Adapted taxonomy based on the context defined by the NSF
data set (described in Section 4.4).

where there was no significant difference among the documents reporting
these categories initially represented in the hierarchy. However, the docu-
ments associated to “biochemistry” have been found as sufficiently different
from the ones about “chemistry”, supporting the decision to represent this
concept as a separate topic in the resulting adapted meta-data structure.
Obviously, the two new concepts have to be semantically related one to
each other in the new meta-data structure; in fact, the method preserves as
much as possibile the original relationships by connecting them in the new
adapted hierarchical structure.

In contrast, the four children of “economics” have been collapsed into
a single category node, highlighting the fact that no significant semantic
difference was found comparing the documents associated to these concepts.
In this case, it is possibile to notice that the representative label is obtained
by merging all the single concept labels; in fact, in this case it is not possibile
to find a unique node that dominates the others.

In conclusion, considering the reported example, the hierarchical meta-
data structure has been considerably reduced in terms of its granularity and
re-defined in terms of its concept relationships. Thus, it now reflects the
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real distribution of the data, highlighting details where they matter and
suppressing them where they are not sufficiently supported by the corpus
of documents. Moreover, the granularity reduction makes it even suitable
for devices with physical visualization constraints, compacting the relevant
information in a smaller structure by reducing the redundancy as much as
possibile. Notice that the new adapted taxonomy can be also considered
as understandable by human users; however, in order to quantify the user-
feedback while using adapted meta-data structures, we also provide user
studies that show that the proposed algorithm is able to adapt the taxonomy
in a new compact and understandable structure from a human point of view.

4.4 Evaluation

In this Section, we evaluate the performance of the proposed narrative-based
hierarchical meta-data adaptation algorithm, ANITA, originally introduced
in[24] and described in this chapter.

In our experiments, we used two different data sets:

e a corpus of news articles from New York Times (NY Times) data set?
(~64K text entries with over ~100K unique keywords), and

e a set of scientific abstracts from National Science Foundation* (~50K
article abstracts describing NSF awards for basic research, with over
~30K unique keywords).

Both data sets represent possible contents that need to be indexed and
presented to the users through a navigational categorization hierarchy to
allow an easy and fast navigation into the contents.

For each data set, we used a corresponding domain meta-data hierarchy
extracted from the DMOZ categorization® by considering the most relevant
terms, in the considered domains, extracted from the corpora. Specifically,
we considered a hierarchy of science (with 72 nodes) which we used to index
the NSF abstracts, and geographical hierarchy (181 nodes), against which
we classified the articles from the NY Times. Note that, to avoid bias
derived from the meta-data extraction process, we selected different subsets
of these original hierarchies by randomly removing some of their nodes.
Specifically, we created a total of 18 distinct hierarchies for each domain,

3http://archive.ics.uci.edu/ml/datasets/Bag-+of+Words
“http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
Saccessible at the link hitp://www.dmoz.org/
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obtained by removing anywhere between 10% to 60% (with 10+ increments,
three different cases per percentage) of the concepts of the considered DMOZ
hierarchy fragments. Moreover, for each of them, we considered different
target meta-data sizes. The results in these sections are averages for all
these hierarchies.

4.4.1 Meta-data hierarchy based Classification

As discussed in the introduction, meta-data hierarchies define aggregations
between concepts in a given domain that can be easily used for indexing
data in such a way to facilitate their organization. Thus, as in [164], we use
the classification effectiveness as a measure of meta-data hierarchy quality
(we formalize the measures in Section 4.4.2).

In our experiments, for each concept ¢; in the considered hierarchy, we
have a set of associated documents A., that best match it. For taxonomy-
based classification, without loss of generality, we rely on the vectorization
method introduced in Section 3.2. These are vectors (associated to the
meta-data hierarchy nodes) representing the structural relationships within
the hierarchy, and thus not only can be used for measuring similarities of
concepts to each other, but can also be used for computing the relationship of
a document to a given concept by quantifying, as usual, the cosine similarity
between the document keyword-vector (containing term frequencies) and the
concept-vector.

4.4.2 Effectiveness Measures

In order to better understand the behavior of ANITA under different settings
and to compare its performance to other algorithms on a concrete basis,
we quantify the quality of the adapted meta-data hierarchies using three
measures.

An important role of meta-data hierarchies in many applications is to
help provide search and access to text documents. Thus, it is essential that
they properly reflect the content of the corpus.

Definition 4.4.1 (Domain coverage) Given a corpus of documents D
and a meta-data hierarchy H(C, E), the coverage of D by H is defined by the
percentage of documents in D that can be associated to at least one concept
in C' using some classification process. Let A., C D be the set of documents
associated to the concept c; € C, we define the domain coverage measure as
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oA
cover(H,D) = ‘UCTZ% al

The main idea of the proposed method is to minimize the loss in terms of
domain coverage while we potentially reduce the size of the given hierarchy.
Thus, the higher the domain coverage, the more effective the hierarchy in
covering the knowledge expressed by the considered corpus.

Note that it would be trivial to increase the domain coverage simply by
concatenating more and more labels. This would not result in a desirable
meta-data hierarchy. Therefore, it is important to quantify other properties,
such as the degree of discrimination of the nodes of the hierarchy, along with
domain coverage. Thus, we define the redundancy measure as

Definition 4.4.2 (Redundancy)

lap(D, H
redundancy(H, D) = |overlap(D, )|7

‘UCZ‘EC Aci

where overlap(D, H) returns the set of documents in D associated to at
least two concepts in H.

Thus, this measure quantifies the discrimination power of the concepts in
the resulting meta-data hierarchy, i.e, the degree of overlapping in the sets of
documents associated to different concepts. The lower the redundancy, the
higher the discrimination power, and thus the more effective the hierarchy
in helping search and access text documents.

Finally, the label term-length (1t]) measure reports the average number
of labels in the original meta-data hierarchy included in the labels of the
adapted hierarchy.

Definition 4.4.3 (Label term-length) Given an initial  hierarchy
H(C,E) and its adapted version H'(C', E'), let length(label,, H, H") =1
iff label(c;) = label(c1), ..., label(c;), with c¢1, ..., ¢ € C." Then, label
term-length is defined as

> e e length(label, H, H')
(&

ItI(H,H'") =

Intuitively, a concept with a concatenated list of labels corresponds to
a composite concept. Since longer compositions will induce some confusion,
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Context: NSF Corpus

cover. redund. Ltl
Pre-Order (sibling ord.) 0.123 0.551 1.724
Parenth. (sibling ord.) 0.128 0.510 1.681

Post-Order (sibling ord.) 0.128 0.530 1.702
Pre-Order (no sibling ord.) 0.125 0.729 1.423
Parenth. (no sibling ord.) 0.128 0.725 1.402

Post-Order (no sibling ord.) | 0.128 0.736 1.463

Table 4.4: Impact of different narrative orders.

Context: NY Times Corpus

cover. redund. Ltl
Pre-Order (sibling ord.) 0.752 0.634 2.289
Parenth. (sibling ord.) 0.759  0.573  2.204

Post-Order (sibling ord.) 0.755 0.612 2.277
Pre-Order (no sibling ord.) 0.755 0.792 2.063
Parenth. (no sibling ord.) 0.758 0.789 1.966

Post-Order (no sibling ord.) | 0.756 0.792 1.809

Table 4.5: Impact of different narrative orders.

arguably the lower the label length, the more informative is the label. If
we consider for example the adapted meta-data hierarchy fragment in Fig-
ure 4.7(b), the composite concept “political economics & microeconomics
& macroeconomics & financial economics”, composed of 4 original labels,
will be less precise than each individual concept in the list. Therefore, we
roughly quantify this ambiguity by counting the labels that compose each
concept name.

In the following experiments, we present results that rely on these three
measures. In Section 4.4.9, we report the execution times. In Section 4.4.10,
we then report user study results that quantify the impact of ANITA on the
users’ navigation experience.

4.4.3 Impact of the Narrative Orders

In Section 4.2.1 we introduced different sentence ordering approaches that
help define, based on different interpretation of the meta-data hierarchy,
the internal order of the nodes of the considered meta-data hierarchy. In
this Section we analyze all the three proposed methods and we study their
behaviour based on the measures introduced in Section 4.4.2.

Tables 4.4 and 4.5 present the values of the effectiveness measures for
the three proposed narrative orderings (Section 4.2.1), with and without
distance preserving sibling ordering. The values are averages of the perfor-
mance results for five different target meta-data hierarchy sizes (from 10%
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to 50% of the original number of concepts, with a 10+ increments).

From these two tables, we observe that sibling ordering results in slightly
higher label term-length. This behavior is due to the fact that the ordering
of siblings is likely to lead to longer sequences of similar siblings, which
will be concatenated if the sequence does not contain the parent. It is
important to note that this lengthening of the labels does not result in
any increase in the redundancy of the resulting hierarchies. In all cases,
the versions with sibling ordering have significantly smaller redundancies
than the corresponding versions with the random ordering of siblings. The
differences in terms of their domain coverages are negligible.

Considering the different traversal strategies, we observe that, for both
data sets, parenthetical traversal provides lower redundancies and lower label
term-lengths. Parenthetical traversal also provides the highest coverages,
especially when distance preserving sibling ordering is used. Thus, in the
rest of the evaluation Section, we only consider the parenthetical traversal
with distance preserving sibling ordering.

4.4.4 TImpact of the Corpus Context

The proposed hierarchical meta-data adaptation method relies on a statis-
tical evaluation of the considered contents to properly adapt on the given
meta-data structure. Thus, in this Section we evaluate the impact of us-
ing the information coming from the corpus context (represented by the
sentence-vectors introduced in Section 4.2.1) on the proposed adaptation
method.

In particular, we try to quantify the benefits of performing the data
corpus information integration to support the pure structural information
contained in the hierarchy itself. In other words, we compare the application
of ANITA on the sentence-vectors (which are based on the extended-vectors
described in Section 3.3) with a version of ANITA where the narrative struc-
ture is created based only on the original concept-vectors (Section 3.1.1)
which reflect only the structure of the meta-data hierarchy and do not take
into account the corpus in any way. Thus, in this second case, the sentence-
vectors represent the original concept-vectors, without any integration of
terms extracted from the considered data corpus.

The three charts in Figure 4.8 plot the performance ratios,
oNLIAuithcontext  for hoth NSF and NY Times data sets and for differ-
ent target hierarchy sizes. For both data sets, the use of corpus context
improves domain coverage and lowers the redundancy.

In terms of the lengths of the term labels, especially for very low target
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Figure 4.8: Domain coverage, redundancy, and label term-length ratio

ANITAwithContext
(GiThui thoretontoms ) curves. The two curves on each of the charts correspond

to the NSF and NY Times data sets.

meta-data hierarchy sizes, the ratio is close to 2.0 for both data sets, indicat-
ing that the use of context results in longer descriptors. However, the ratio
decreases significantly when the targeted size of the meta-data hierarchy
increases (basically when the number of concepts is higher than 20%).
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Figure 4.9: Comparison in terms of Domain coverage, redundancy, label
term-length between Informed and Uniformed meta-data hierarchies (NSF
data sets). The values in parentheses are the average gains by the winning
scheme.

4.4.5 Impact of Document Context in Meta-Data Hierarchy
Adaptation

One of the key motivations of the proposed meta-data adaptation approach
is that a hierarchy that properly reflects the corpus knowledge can more
precisely guide the user into its exploration instead of another structure not
properly informed about it. Therefore, in this Section, we verify this hypoth-
esis by evaluating the performance of ANITA adapted hierarchies, obtained
without considering a subset of documents in the considered corpus, and we
compare them against those informed about the entire data set. In order
to do that, considering the 18 original taxonomies (and for each of them, a
target meta-data hierarchy size between 10% and 70%) and their informed
adaptations H' (using the entire set of documents represented by the NSF
data set D), we evaluate two other different cases:

e considering the NSF data set without documents concerning “biology”
(D-pio = D - Dp;, where Dy, represents the set of documents contain-
ing the term “biology”) we obtain the adapted hierarchies H’ ;; which
are uninformed about the documents concerning “biology”;

e considering the NSF data set without documents concerning “astron-
omy” (D-gstr = D - Dgstr) we obtain the adapted hierarchies H’

—astr
which are uninformed about the document concerning “astronomy”.
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Therefore, in order to quantify the importance of properly informed
adapted hierarchies, we compare the performance of each H' against the “bi-
ology” and “astronomy” uninformed adapted hierarchies H' ,, and H’ .,
using the original corpus D of NSF text documents.

The comparison in terms of domain coverage clearly demonstrates the
benefit of using the informed meta-data hierarchies instead of the unin-
formed ones: in 78.6% of the cases the informed structure permits to obtain
higher coverages (with an average gain of ~ 10%). Moreover, the benefits in
terms of redundancy is also more evindent, providing in 98.9% of the cases
a lower redundancy in terms of associated documents (with an average gain
of ~ 9%). Finally, in terms of label term-length, the informed clustering
tends to provide lower label-length (with an average gain of ~ 12%).

It is important to notice that, even in the small portion of cases in which
the uninformed approach reports better performances, its relative gains are
similar to those obtained when the informed approach reports better results.

4.4.6 Comparison wrt. other Segmentation Methods

While there are many segmentation approaches in the literature, we intro-
duced a novel method (Section 4.2.2) to determine, given a sequence of
sentences, the position of the segments’ boundaries.

Thus, in order to evaluate the introduced method, we compare the ob-
tained results against an alternative approach; in particular, we evaluate the
performance of the CUTS algorithm, originally proposed in [119].

The authors of [119] provide a segmentation method that maps text
entries into a curve in a way that makes apparent a variety of topic devel-
opment patterns; then they analyze the curve for automatic segmentation
of topics. In particular, CUTS algorithm works as follows; first, the sequence
of entries (represented by their corresponding keyword-vectors) is mapped
onto a curve, which highlights the development patterns in terms of the
similarity between adjacent entries. This pattern development curve is then
analyzed, and the topic segments, as reflected by the changes in the slopes
of the curves, are identified (Figure 4.10 illustrates the main phases of CUTS
algorithm).

In this Section, we compare the segmentation approach reported in Sec-
tion 4.2.2 against CUTS algorithm [119], analyzing the benefits and the dis-
advatanges of using the proposed segmentation method.

Considering the NSF data set, in Figure 4.11 we plot the results in terms
of domain coverage, redundancy, and label term-length for ANITA and CUTS
algorithm; it is possible to observe that, for very small hierarchies (that
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Figure 4.10: Overview of the CUTS segmentation algorithm [119].

consist in very low domain cover values) CUTS provides better results: but
when the granularity of both increases, they converge to similar values.

Moreover, Figure 4.11 shows a significant difference in terms of label
term-lenght: in fact, ANITA provides longer labels that, however, do not pro-
vide any loss in terms of redundancy, where the advantage of using ANITA
segmentation method appears evident: in fact, even when the domain cov-
erage increases, the redundancy provided by ANITA stays lower.

4.4.7 ANITA vs. Concept Clustering Methods

The proposed segmentation method, when applied on concepts within a hi-
erarchical meta-data structure, can be easily seen as a clustering strategy
that aims to group those nodes that are strongly related to each other (based
on the considered context). Therefore, in this Section, we compare the
narrative-based partitioning approach (Section 4.2.2) against other alterna-
tive clustering methods. In particular, we considered the k-Means clustering
strategy, with k also being equal to the target meta-data hierarchy size re-
quested from ANITA. In both cases, sentence-vector representation of the
meta-data nodes are used to support partitioning. Also, in both cases, once
the partitions are obtained, the same meta-data hierarchy re-construction
and labeling strategies (described in Section 6.5.3) are used to stitch the
hierarchy back.
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Figure 4.11: (a) Domain coverage, redundancy, and label term-length for
ANITA and CUTS algorithm with NSF data set.

In these experiments, we considered target taxonomy size between 10%
and 70% (with 10+ increments). The results in Figure 4.12 simply reports
the percentages of cases in which one approach provides better performances
than the other; as it is possible to notice, ANITA provides a clear gain in terms
of lowering the amount of redundancy in the taxonomy (in 95.2% of the cases
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Figure 4.12: Comparison in terms Domain coverage, redundancy, label term-
length between ANITA and k-Means (both data sets). The values in paren-
theses are the average gains by the winning scheme.

ANITA provides lower redundancy, with an average gain of ~ 14%).

Moreover, ANITA also provides a significant gain in terms of domain cov-
erage (in 61.9% of the cases, with an average gain of ~ 16%) and lower
values in terms of label term-length (in 63.1% of the cases, with an average
gain of ~ 22%), highlighting the global benefits of using the proposed adap-
tation approach. Again, it is important to notice that, even when k-Means
reports better performances, its relative gains wrt. ANITA are similar to the
relative gains obtained when ANITA reports better results.

This is consistent with the key design goals of ANITA; i.e., creating com-
pact meta-data hierarchies that provide high category differentiation (to sup-
port effective navigation), even when the domain coverage increases. In fact,
if both clustering approaches define a set of partitions of concepts/categories
that are similar one to each other, ANITA leverages the statistical context
information to define an order between concepts/categories that allow the
system to find, as k-Means, the most similar concepts, but with relation
to the structural distance given from the knowledge expressed by the do-
main expert through the original meta-data hierarchy. The main idea is
that, given a concept node, we explicitly search for the local redundancies
in neighbourhood; in fact we believe that, when a domain expert defines
a concept ¢;, he generally introduces (by inserting children nodes) many
details that can be redundant or even irrelevant in a context. Thus, by
ordering the concept-sentences, ANITA reduces the total redundancy of the
categorization by search first for local redundancy and, proportionally to
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Context: NSF+NYTimes Corpora

cover. ratio  redund. ratio  Ltl ratio
ANITA/H-EM 1.140 0.866 0.939
ANITA/EM 1.072 0.688 0.966
ANITA /X-Means 1.089 0.675 0.959
Table 4.6: ANITA vs. Hierarchical- EM (#252), EM (28H2) and X-Means
( ANITA )
X—Means

the structural distance, extend the search to more distant nodes.

We also compared the proposed ANITA narrative-based clustering ap-
proach against other clustering algorithms, such as EM, X-Means, and
Hierarchical-EM (Hierarchical-EM method applies EM clustering strategy
to each sibling group).

Since these algorithms do not take target number of clusters as input, we
first apply these algorithms and then use ANITA with the number of clusters
returned by them. As these results show (Table 4.6), ANITA provides better
results in terms of all measures against these alternative clustering strategies;
ANITA provides a clear gain in terms of lowering the amount of redundancy
in the hierarchy in comparison to all the considered alternative approaches
(up to 32% drop) as in terms of domain coverage (up to 14% increase) and
provides lower values in terms of label term-length (a reduction up to 6%).

4.4.8 Comparison wrt. the Original Meta-Data Hierarchy

One of the key motivation of our meta-data adaptation method is that a
properly adapted hierarchy can reduce the overall redundancy of the orig-
inal meta-data and leads the user into a more effective exploration of the
contents. Thus, in order to verify this hypothesis, in this Section we quantify
how much difference in domain coverage and redundancy with respect to the
original meta-data hierarchy occurs for varying target meta-data hierarchy
sizes.

Figure 4.13 shows the ratios between the considered effectiveness mea-
sures on the adapted and the original hierarchies, refering to the NSF (blue
lines in the Figures) and NY Times (red lines in the Figures) data sets.

Figure 4.13 shows that, for both data sets, the relative domain coverage
is very close to 1.0 for adaptations with > 30% of the nodes; this means
that the adapted hierarchies can index the same amount of contents as the
original hierarchies. As expected, the coverage drops when the size of the
adapted meta-data hierarchy is pushed further down, even though the la-
bel length increases to compensate for this drop. Note that, despite this
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Figure 4.13: Domain coverage, redundancy, and label term-length ratio

( Oﬁ?glgﬁal) curves using NSF data set and NY Times data set.

increase in the label lengths, ANITA is still able to lower the redundancy in
the hierarchy, even when the compression rates are lowered down to 10%
range. Finally, note that the similarities between the NSF and NY Times
redundancy and label term-length curves on these charts highlight that the
performance of ANITA in redundancy and label term-length is largely inde-
pendent of the data set.

One major difference among the two data sets is the coverage behavior:

in the case of the NSF data set, the original meta-data hierarchy appears to
have many unnecessary nodes (i.e., many nodes have very few documents
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associated in the considered corpus); thus, the relative domain coverage
stays unaffected even when the target meta-data hierarchy has only 40%
of the original nodes; after this point, there is a sharp drop implying that
most documents are represented by only few nodes in the original hierarchy.
In contrast, in the NY Times data set, the drop in coverage is slight, but
more or less constant indicating that (a) most of the hierarchy nodes are
significantly represented in the data set, but (b) the documents have more
geographical meta-data nodes under which they can be classified.

4.4.9 Execution Time

For all the experiments we used an Intel Core 2CPU @2,16GHz with 1GHz
Ram. The execution time is dominated by the narrative interpretation of the
concept categories, obtained through an initial text processing and concept
analysis (Section 4.2.1), which for these experiments was around 60 seconds
for the scientifical input meta-data hierarchy of 72 nodes and 50K NSF
articles (and around 140 seconds for the geographical meta-data hierarchy
of 181 nodes and 64K NSF articles). The adaptation process itself takes less
than 0.1 seconds (for both ANITA and k-Means).

Note that since the text processing is an off-line and one time process, the
impact of the adapted meta-data hierarchy on the users’ navigation times
is a more critical factor than the execution time itself. We study this next
through user studies.

4.4.10 User Study

In order to analyze the benefits of using the ANITA adapted categorization
for text data indexing purposes, we also conducted a user study (similarly
to [29]) and evaluate the feedback of 16 users when exploring NSF text arti-
cles using different meta-data hierarchies. The users represent various range
of ages, backgrounds, jobs and education level and they have intermediate
web ability (they are not computer scientists or domain experts).

We presented to the users, three different meta-data hierarchies that in-
dexed NSF documents: the original portion of DMOZ-extracted hierarchy,
with 72 concepts, its ANITA-based adaptation with 13 concepts (with &k ran-
domly set to 13) and the k-Means based adaptation (with same value of
k). In order to avoid bias in the evaluation of the presented hierarchies, we
presented the 3 meta-data hierarchies to the user in a random order.
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Context: NSF Corpus

avg time (sec) avg num. of interactions
Original (72 concepts) 23.5 5.1
ANITA (13 concepts) 9.7 2.3
k-Means (13 concepts) 11.0 2.9

Table 4.7: User Study: Average time and average number of interactions
(clicks on the structure for expanding or collapsing nodes) per meta-data
hierarchy, when the users explore the structure to retrieve documents related
to a randomly selected concept.

Search Time and Interaction Counts

Given a randomly selected concept label extracted from the original hier-
archy (different for each partecipating user), we asked the users, for each
presented meta-data hierarchy, to retrieve related documents by exploring
the presented categorizations. Therefore, we analyze the time and the num-
ber of interactions (in terms of expansions/collapses of the presented nodes
in the hierarchy) the user needs to reach satisfactory documents. As re-
ported in Table 4.7, ANITA adapted meta-data hierarchy reports significant
gains in terms of time (from an average of 23.5 seconds to an average of
9.7) and number of interactions (from 5.1 to 2.3) by reducing the number of
nodes the user has to navigate through. On the other hand it is important to
note that, even if k-Means adapted meta-data hierarchy presents the same
number of nodes as ANITA, it is not able to guide the user in an accurate
exploration of the documents as well as ANITA adapted hierarchies do; in
fact, with respect to the ANITA adapted hierarchy, the user needs more time
to find relevant documents (an average of 11.0 seconds) and also more inter-
actions to retrieve the appropriate contents (an average of 2.9 operations).
Therefore, we can state that ANITA is not only able to reduce the cardinality
of the selected meta-data hierarchy, but also organizes the concepts in such
a way to facilitate the retrieval operations.

Classification Accuracy

Given a randomly selected article (different for each considered user), ex-
tracted from the considered NSF corpus of documents, we asked to the
users, for each presented meta-data hierarchy, to select those nodes (if any)
that would best represent the selected content. Then we compared these
user associations with the ones automatically provided by the system (Sec-
tion 4.4.1), calculating the percentage of shared concepts associated. All
the considered users provided, for each document, between two and three
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associated concepts per hierarchy. The results indicate that, for the original
meta-data hierarchy, 67.7% of the user selected concepts were shared by the
system. Similarly, the ANITA-based adapted hierarchy provides a 68.7% of
shared concepts, indicating that the quality of the hierarchy is as good as
original one despite containing much smaller number of concepts. On the
other hand, the k-Means based adapted hierarchy does not perform well:
only 37.4% of the user selected concepts had been effectively associated by
the system to such nodes, highlighting the fact that a naive re-structuring
process (such as k-Means) can cause, from a user point of view, a significant
increase in terms of confusion and disorganization.

Subjective Questionnaire Measures

After the study, each user also completed a brief questionnaire which in-
cluded two questions (“Is the meta-data hierarchy easy to use?” and “Is the
meta-data hierarchy sufficiently detailed?”); the users could quantify the
responses using a 5-point scale ratings.

As shown in Table 4.8, the users reported that the ANITA adapted hier-
archy was as “easy to use” as the original one (both 4.1) while the k-Means
adapted hierarchy was significantly harder to use (3.3). Moreover, even if the
number of presented nodes was dropped almost 80%, the users commented
that, in terms of providing “sufficient details” (i.e., the number of alterna-
tives), ANITA adapted hierarchy provides a good range of details, close to the
original one (3.6 vs 3.8). Therefore, we can infer that the user does not care
about the pure number of presented alternatives, but only cares about those
that she really needs. We can summarize these results as follows: as initially
supposed, the original meta-data hierarchies, developed by domain experts
for broad coverage of documents, provide unnecessary details that can be
removed without causing significant loss in terms of contextual knowledge.
On the other hand, a general adaptation method such as k-Means, could in-
troduce confusion and disorientation; in fact, from a user point of view, the
k-Means adapted meta-data hierarchy significantly reduces the “sufficiency”
(only 2.6) and results in hierarchies that the users find harder to use (3.3 in
terms of “easy to use”).

Thus, in conclusion, the case study and the experiments, presented in
this dissertation, show how this approach enables contextually-informed
strengthening and weakening of semantic links between different concepts.
The unique aspect of our approach is that it mines emerging topic correla-
tions within the data, exploiting both statistical information coming from
the document corpus and the structured knowledge represented by the input



4.4. EVALUATION

Context: NSF Corpus

easy to use sufficiently detailed

Original (72 concepts)
ANITA (13 concepts)
k-Means (13 concepts)

4.1
4.1
3.3

3.8
3.6
2.6

89

Table 4.8: Subjective questions in the user study: for each question, each
user has quantified her opinion by a 5-point scale rating.

meta-data.
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Chapter 5

Exploration of Text
Documents using Adapted
Meta-Data Hierarchies

In the previous chapter, we defined our narrative-based method to reduce a
given meta-data structure in order to reflect the real distribution of a large
set of text documents. In this chapter, as proposed in [25] and [26], we
provide a new exploration mechanism that leverages the obtained adapted
meta-data in order to improve the efficiency of the exploration process, using
the natural relationships expressed by the given contents in addition to those
formalized by the associated adapted meta-data structures.

5.1 Preliminary Motivation

Even if many popular approaches to text exploration are based on avail-
able feature statistics [136], many recent systems begin to leverage available
semantics to guide the retrieval process towards an equilibrium between
relatedness and wisdom [50].

We recognize that the assumption that users know what they want pre-
cisely is not always valid. Also, the conventional way of presenting the user a
list of candidate documents may fail to help the user observe the contextual
relationships, among general categories and documents, hidden in the data
contents. Therefore, traditional feedback processes, which can be degraded
significantly if the user’s feedback is uninformed or inconsistent, may fail to
be effective.

This problem can be addressed to a limited extent by relying on domain

91
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meta-data structures that can inform the user about the current domain spe-
cific relationships among concepts/categories and, thus, support relatively
more informed navigation/exploration within the document space [135].
However, the meta-data structures describe the given domain with cate-
gories and relationships which are valid at the time at which the meta-data
was created. Thus, it might be convenient to first perfom the adaptation
process (described by the previous Chapter) on the given hierarchical struc-
tures, in order to adapt them to the semantics expressed by the considered
data.

In this chapter, as proposed in [25] and [26], we present our exploration
system to help the users navigate within text collections, relying on a novel
keywords-by-concepts (KbC) graph that leverages the optimized knowledge
expressed by the adapted hierarchy. The KbC of a text collection, in the
context of a given domain knowledge, is a weighted graph constructed by
integrating a domain knowledge (formalized in terms of the adapted hierar-
chical meta-data structures, i.e., the semantic context) with the given corpus
of text documents (i.e., the contents). Consequently, unlike related works,
where the feature weights either reflect the keyword statistics in the cor-
pus of text contents or the structural relationships between the concepts in
the meta-data (see Section 2.2 for a discussion on literature related to this
problem), the weights in the KbC graph reflect both the semantic context
(imposed by the meta-data structure) and the documents’ content (imposed
by the available document corpus!).

Figure 5.1 shows a fragment of a sample KbC graph. This example
leverages a previously adapted geographical domain knowledge (which or-
ganizes geographic entities of the World - cities, provinces, regions, states,
continents) and the keywords extracted from a collection of newspapers ar-
ticles. In this example, the newspaper articles from which the keywords are
extracted are about the “9/11 World Trade Center terrorist attack” and the
” American invasion of Afghanistan”:

e Each node in the graph is either a concept, from the adapted hier-
archical meta-data, or a keyword extracted from the content of the
document base.

e The graph is bipartite: each edge connects a domain concept to a
content keyword (hence the name keywords-by-concepts graph). The
edges are weighted and they weight the strength of the relationship

In the news application, that motivates this research, this corpus is defined by the
temporal frame of interest and/or the keywords appearing in the news articles.
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Figure 5.1: An example KbC graph constructed using concepts from a ge-
ographical hierarchical meta-data structure and keywords extracted from a
corpus of news documents.

between the connected nodes in the given context. In Figure 5.1, the
weights of the edges are visually represented through the thickness of
the edges.

Consider the geographical concepts “US” and “Afghanistan”. In the
graph fragment, “US” is linked to the content keywords “terrorism”, “Bin
Laden”, “U.N.”, and “nuclear” (in decreasing order of weights), while
“Afghanistan” is connected to “terrorism” and “Bin Laden”. Thus, these
last two keywords create a content-based association between the two geo-
graphical concepts “US” and “Afghanistan”. In fact, before the 9/11 events,
very few people would immediately associate “Afghanistan” and “US”. After
the 9/11 events, however, keywords, such as “terrorism” and “Bin Laden”
would strongly link “US” and “Afghanistan”. Thus, domain-specific meta-
data structures, when used alone, cannot be effective in capturing and lever-
aging the evolving semantics associated to the concepts. In particular, key-
words associated to the same concept would strongly differ at different times
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because the background contexts about the places, people, and the facts are
different. Meta-data alone cannot capture this.

Thus, we propose to address these deficiencies of traditional purely
feedback-based and purely meta-data based solutions, by developing an in-
novative exploration and navigation approach which discovers and highlights
hidden, contextually-relevant relationships between concepts as well as key-
words characterizing documents in the corpus. More specifically,

e we define the keywords-by-concepts (KbC) graph, which is a weighted
graph constructed by a tight integration of the semantic context (e.g.,
the previously adapted meta-data) with the content (i.e., the keywords
extracted from the documents search space) (Figure 5.1);

e we assign the weights of the edges in the KbC graph to reflect both the
keyword statistics in the corpus of documents as well as the semantics
and structural relationships between the concepts in the meta-data.
Thus, we leverage these weights to associate a ranked list of documents
to each node of the graph;

e we finally rely on the KbC graph in the CoSeNa (Context-based Search
and Navigation) system for context-aware navigation and document
retrieval.

Using CoSeNa the user can navigate within the document space by start-
ing from any concept or keyword. In Figure 5.2 an example is shown; the
user started the New York Times articles exploration experience by typing
the keyword query “peace”. CoSeNa presented the user many navigational
alternatives as well as documents that are relevant, in the selected context,
to the user request (listed at the right of the interface).

Navigational possibilities are represented relying on the tag cloud
metaphor: the font sizes express the strength of the relationships among
concepts and keywords. In the example, many navigational possibilities
have been proposed; “israel” and “middle east” represent geographical con-
cepts that are strongly related to the user query, while terms as “barak” or
“yasser arafat” indentify corpus terms that are relevant to the user request.

Documents associated to the user query are enumerated in a ranked list.
When the user clicks on a document, the system shows it and highlights the
contextually important concepts and keywords in the document (by showing
the most relevant terms, in the selected document, in different colors).

The user can navigate into the KbC space by clicking on the concepts
and keywords highlighted in the tag clouds as well as in the documents. Con-
sidering the example proposed in Figure 5.2, clicking on the term “yasser
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Figure 5.2: A sample screenshot of the Navigation interface of CoSeNa
engine.

arafat”, the user can enable a query refinment about the clicked term on
the context defined by her query (the keyword “peace” in this case). The
proposed system also provides integration with three on-line popular media
sources: Google Maps, Flickr, and YouTube (at the left-bottom of the in-
terface). To achieve context-based integration, CoSeNa queries the content
sources leveraging the concepts and keywords in the clouds and presents
the results to the user in a unified interface. By clicking on the proposed
video/images, the user can visualize more in details the selected content (in
a separate window).
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5.2 Construction of the Keywords-by-Concepts
Graph

In this Section, given a meta-data structure H and a corpus of documents
(contents) D, we describe how to create the keywords-by-concepts (KbC)
navigational graph to support the exploration of a large text collection,
by highlighting the keyword and concept relationships. The construction
algorithm combines information coming from a structural analysis of the
relationships formalized in H with the analysis of the most frequent key-
words appearing in the corpus D of documents. In the resulting graph, the
weighted edges connecting keywords and concepts provide context-based
navigation opportunities. In Section 5.4, we will show the use of the graph
in assisting navigation and exploration within CoSeNa system.

The construction of the graph is preceded by a 4-step analysis process,
which extracts, from the given meta-data and document corpus, the infor-
mation needed to identify the concept-keyword mappings relevant to the
given context:

1. The first step takes as input a meta-data structure and the set of
considered text documents; then, it preliminarily adapts this struc-
ture to the considered corpus of documents. Therefore, it maps the
new adapted concepts onto a concept-vector space in a way that en-
codes the structural relationships among nodes in the adapted hierar-
chy. The embedding from the concept hierarchy to the concept-vector
space is achieved through the previously described concept propaga-
tion scheme which relies on the semantical relationships between con-
cepts implied by the structure of the meta-data to annotate each con-
cept node in the hierarchy with a concept-vector (Section 5.2.1).

2. For each concept in the adapted meta-data structure, the second step
enriches the related concept-vectors by leveraging the knowledge ex-
pressed by the corpus of documents. This helps identify highly corre-
lated concepts and keywords, providing the basis for the keywords-by-
concepts (KbC) navigational graph construction.

3. Using these semantic correlations, we finally create the Keywords-by-
Concepts navigational graph that tightly integrates keywords and con-
cepts to provide a unique structure for an efficient exploration of the
corpus.

4. Finally, we also extend the semantics of each considered keyword be-
longing to the KbC graph, in order to improve the efficacy of the graph
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in guiding the user in the exploration process.

Next, we discuss these steps in detail.

5.2.1 Meta-Data Analysis: Adapting the Structure and Em-
bedding Concepts into a Concept-Vector Space

Given a hierarchical meta-data structure H(C, E), and a corpus of related
text documents D, we perform the adaptation process described in Chap-
ter 4 in order to obtain a new hierarchical meta-data H'(C’, E’) that best
describes the considered text documents. Then, in order to support discov-
ery of mappings between concepts and documents, we need to map concepts
in the adapted meta-data onto a concept-vector space.

Again, for this analysis step, we rely on the mapping process presented
in Section 3.1.1. Given a meta-data structure, we assign a concept-vector
¢ to each concept node in the hierarchy, such that the vector encodes the
structural relationships between this node and all the other nodes in the
hierarchy.

5.2.2 Discovery of Concept-Keyword Mappings

The next step towards the KbC construction process is to discover the
concept-keyword mappings using the concept-vectors identified in the previ-
ous step. In other words, in this phase, we find those keywords that strongly
relate to the concepts in the taxonomy. Let c?., denote the concept-vector
corresponding to concept ¢;. At this step, given a concept ¢; and the related
association, A._,4(¢0) containing the most related documents (calculated by
considering the adaptive cut-off Algorithm described Section 3.2), we search
for the most contextually informative keywords corresponding to this con-
cept. More specifically, we compute the degree of matching between the
given concept and a keyword which occurs in the associated documents by
using the process described in Section 3.3. This process can be read as treat-
ing the concept-vector corresponding to the concept ¢; as a query and the
set of associated documents A._4(¢0) as positive relevance feedback on the
results of such query. For each concept, we consider all keywords contained
in at least one document. We apply an adaptive cutoff (see Section 3.2 for
the adaptive cut-off algorithm) to this set in order to select those keywords
with the highest weights. At the end of this step, each concept ¢; in the
adapted meta-data hierarchy is associated to a so-called extended-vector,
€v,,, that tightly integrates keywords from the corpus and concepts from the
hierarchy. Thus, these vectors not only quantify the structural relationships
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among the hierarchy concepts, but also formalize the relationships with the
chosen context documents (by including those keywords better describing
the concepts); in fact, for each concept, these keywords are extracted from
the related document association (Section 3.2) by using the the approach
proposed in 3.3.

5.2.3 Constructing the KbC Graph to Support Document
Retrieval

At this point, for each concept ¢;, we have obtained an extended-vector,

e_i}ci — <ui,17ui,27 ey >7

where u; j represents the degree of matching between the concept ¢; and
the j-th keyword which occurs in the associated documents. This extended-
vector encodes the related keywords in the corpus and their weights. In order
to construct the KbC graph, we link together the concepts and keywords
using these relationships.

Let C' = {c1,...,cn} be the set of concepts in the input taxonomy, H,
and K = {k1,...,kn} be the set of all keywords appearing it at least one
extended-vector. We construct KbC in the form of an undirected, node-
labeled, edge-weighted graph, G(Vo U Vi, E| I, p), as follows:

e Let Vi be a set of vertices, Vo = {ve,, ..., v, }, where vertex v, € Vi
is labelled as “c¢;”; i.e., l(ve,) =“¢;”;

e Let Vi be aset of vertices, Vg = {vg,, ..., v, }, where vertex vk, € Vi
is labeled as “k;”; i.e., I(vy,) =“k;”; and

e For all v, € Vo and vy, € Vi such that €v;[j] # 0, there exists an
edge (ve;, vk;) € F such that

€be, 7]
|€De, |

p(<vckaj>) = Pij =

Therefore p; ; represents the relative weight of the keyword k; in the
corresponding vector €7, i.e. the role of the keyword k; in the context
defined by the concept ¢;.
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5.2.4 Associating extended-vectors to the Keywords in the
given Corpus

It is important to notice that the proposed graph leverages not only the con-
cepts expressed by the meta-data structure, but also the keywords contained
in the considered text documents to help the user explore the corpus. Thus,
we also need to associate an extended-vector to each considered keyword
belonging to the constructed graph. In order to perform this operation, we
consider their concept neighbors in the corresponding KbC graph. By con-
struction, each keyword node vg; € Vi in the KbC graph is connected to
at least one concept node, v.; € V. Thus, the extended-vector for €by; is

computed as
- Pij S
by, = g 2 — . €D,
K <||evci|| > ’

c Eneighbor(vk]. )

where p; ; is the strength of the relationship between concept ¢; and keyword
k; obtained through adapted meta-data and corpus analysis in Section 3.3.
As it is the case for the €b., vectors, €ty are also normalized to 1.

5.3 Unifying Concept And Keyword-Vector
Spaces to Support Document Retrieval

In order to support exploration of the documents in the corpus, we need to
associate, for each node of the KbC graph, a corresponding (ranked) list of
documents. In order to do that, for each node of the KbC graph, we leverage
the related extended-vectors previously calculated, and we simply calculate
the cosine similarities against the document-vectors. The text documents
that best match with it are collected and associated to the node (ranked
based on the similarity value). Notice that, using the extended-vectors, we
are able to associate to each node of the graph not only the documents
that contain the label of the node, but also the documents containing all
contextually relevant terms (i.e., concepts or keywords).

5.3.1 Associating Documents to KbC Nodes in the given
Context

Since, at this point, each concept and keyword node in the KbC graph
has its own extended-vector ev, the documents in the given corpus can be
associated under these nodes as in Section 5.2.2, but using ev vectors instead
of ¢ vectors. In this manner, using the extended-vectors, our system is able



100 CHAPTER 5. EXPLORATION OF TEXT DOCUMENTS

to associate to each concept and keyword, not only the documents that
contain that concept or the keyword, but also the documents containing all
contextually relevant terms.

5.3.2 Measuring Concept-Concept and Keyword-Keyword
Similarities in the given Context

At this point, each concept and keyword node in the KbC graph has an as-
sociated extended-vector €0, capturing both the taxonomical relationships
between concepts and the context defined by the documents in the given
corpus. Therefore, in addition to associating documents to KbC nodes, the
similarities between concept and keywords in the given context (defined by
the adapted meta-data and the document corpus) can be measured using
the cosine similarities between these vectors. In the next Section, we will
describe the use of these similarities in CoSeNa to support document explo-
ration.

5.4 CoSeNa System and Use Case

In this Section, we present the COntext-based SEarch and NAvigation
(CoSeNa) system [25, 26|, which leverages the KbC model introduced be-
fore. With CoSeNa, the user can navigate through the nodes in the KbC
graph (computed in a preliminary pre-processing phase), starting from any
concept or keyword. At each step, CoSeNa presents the user navigational
alternatives as well as documents that are relevant in the given context.
Navigational alternatives are represented relying on the tag cloud metaphor:
given a concept or keyword,

e the system identifies most related concepts and keywords (using the
KbC graph and concept-concept /keyword-keyword similarities), and

e forms a concept cloud (consisting of related concepts) and a keyword
cloud (consisting of related keywords).

Concept and keyword font sizes express the strength of the relationships
among concepts and keywords. Documents associated to the concepts and
keywords are enumerated in a list ordered with respect to the weights cal-
culated as in Section 5.3.1. When the user clicks on a document, the system
shows the corresponding document text and highlights the contextually im-
portant concepts and keywords in the document. The user can navigate into
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the KbC space by clicking on the concepts and keywords highlighted in the
tag clouds as well as in the documents.

5.4.1 Navigational Interface

Figures 5.3 and 5.4 show the use of the CoSeNa system in a scenario where
a corpus of news documents (the New York Times articles collection, which
contains 300,000 text entries with over 100,000 unique keywords?) is explored
with the help of a geographical concept meta-data structure 3.

Figure 5.3 depicts the visual interface of the CoSeNa system after the user
provides the concept “Iraq” to start exploration. Coherently to the KbC
model, CoSeNa first identifies related content keywords (including “Saddam

http://archive.ics.uci.edu/ml/datasets/Bag+of+Words. This data set has no class
labels, and for copyright reasons no filenames or other document-level metadata.

3The hierarchical meta-data defines the context that drives the user in searching and
navigating the documents. In this case we highlight geographical relationships. The
use of a historical meta-data would instead make evident historical relationship among
documents



102 CHAPTER 5. EXPLORATION OF TEXT DOCUMENTS

Hussein”, “missile”, “weapon”, “Kuwait”, and “persian gulf”) and presents
these to the user in the form of a keyword cloud.

In addition, using the concept-to-concept similarities (described in Sec-
tion 5.3.2), CoSeNa also creates and presents a related concept cloud con-
sisting of geographical concepts “Iran”, “United States”, “North Korea”,
and “Russia”. These geographical concepts in the concept cloud are also
shown on a world map, with markers representing visual links. Note that the
CoSeNa interface also shows related videos and images (searched on Youtube
and Flickr by using the concept and term clouds) as well as documents that
are associated to the concept “Iraq” as described in Section 5.3.1.

When the user clicks on the term, “weapon”, in the keyword cloud,
CoSeNa updates the tag clouds as well as media (text, images, and video)
presented to the user accordingly. The result is shown in Figure 5.4.
In this case, the concept cloud (“Russia”, “Iraq”, “North Korea”, and
“United States”) represents geographical concepts neighboring the keyword
“weapon” in the KbC graph (coherently with the previous case, geographi-
cal concepts are shown on the world map). The keyword cloud (“missile”,
“security”, “arsenal”, “warhead”, etc.) is created using the keyword-to-
keyword similarities, as described in Section 5.3.2. When the user clicks on
a document, as also shown in Figure 5.4, CoSeNa displays the corresponding
article and highlights relevant content and keyword cloud elements in the
document.

5.4.2 Contextual Impact

As described above, CoSeNa relies on the extended-vectors (€0) of the con-
cepts and keywords to associate documents to the nodes of the KbC graph.
The extended-vectors are also used in determining the strengths of the con-
nections among concepts and among keywords.

As opposed to the concept-vectors (¢0), which capture only the hierar-
chical relationships between concepts, these extended-vectors capture, in ad-
dition to the semantic relationships between concepts in the adapted meta-
data, also the context defined by the documents in the given corpus. In
order to observe the impact of this corpus context on the strength of the
relationship between a given pair of concepts, ¢; and c¢;, we define the impact
of the corpus context as the ratio

impact(ci, c;) = cos(et(c;), ev(cy)))

cos(ci(c;), cb(cy))

Note that if impact(c;, ¢j) ~ 1, then it means that the corpus context
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WASHINGTON, Oct. 21 President Bush said today that the [North Korean!
leader, Kim Jong Il, had to disarm his nation "for the sake of peace,” but
indicated that he saw a significant difference between North Korea's =
development of nuclearfneapongand iraq's pursuit of them

In his first public remarks about/North Koreal since the White House

8 announced last week that the country was conducting a covert nuclear
program, Mr. Bush said he would use diplomatic pressure, not
threats of military action, to try to persuade North Korea to dismantle its
nuclear efforts

"It is a troubling discovery, and it's a discovery that we intend to work with our
friends to deal with," he told reporters in the Oval Office after a meeting with
the NATO secretary general, Lord Robertson. "I believe we can do it

J peacefully. | look forward to working with peaple to encourage them that we
must convince Kim Jong Il to disarm for the sake of peace "

In contrast, Mr. Bush said he was threatening military action against President

Europe
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[]

Figure 5.4: CoSeNa interface after the selection of keyword “weapon”; in
the figure the document visualization interface of CoSeNa which highlights
occurrences of the tag cloud terms in the document.

has no impact on the strength of the relationship between concepts, ¢; and
¢j. On the other hand, if impact(c;,c;) > 1, then the context defined by
the corpus impacts one or both of the concepts in such a way that their
relationship strengthens. In contrast, if impact(c;, c;) ~ 0, then the impact
of the corpus on the concepts, ¢; and cj, is such that their relationship is
weakened by the nature of the given set of documents (i.e., the concepts are
strongly related to disjoint news events and, thus, the relationship between
the concepts is weaker than it is in the given taxonomy).

Table 5.1 shows sample pairs of concepts with most positive, neutral,
and most negative impact when using the entire news article corpus. As can
be seen here, the content of the news articles significantly strengthen the
relationships between concepts, “Iraq” and “United States”, and concepts,
“Europe” and “Iran”. In contrast, the relationship between concept pairs,
“Tucson” and “London”, has been weakened to almost null. In fact, the
keyword clouds corresponding to these two concepts show that, while the
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Concept 1 Concept 2 Impact
Cuba Florida 71.60 (Strengthened)
Europe Iran 55.61 (Strengthened)
Iraq United States || 48.51 (Strengthened)
Afghanistan United Stated || 29.27 (Strengthened)
North America | United Stated 1.01 (No impact)
Las Vegas Nevada 0.99 (No impact)
Madrid Houston ~ 0 (Weakened)
London Tucson ~ 0 (Weakened)

(a) Using all the available news articles

Table 5.1: The impact of the corpus context: relationships that are strength-
ened and weakened using the context defined by the entire corpus of news
articles.

Concept 1 Concept 2 Impact
United States China 68.28 (Strengthened)
United States Japan 43.12 (Strengthened)
United States Taiwan 41.28 (Strengthened)

Europe Russia 21.24 (Strengthened)
South America Brazil 1.01 (No impact)
North America Canada 0.99 (No impact)

New York Harare ~ 0 (Weakened)

Paris Sydney ~ 0 (Weakened)

(b) Using the “economy” articles

Table 5.2: The impact of the corpus context: relationships that are strength-
ened and weakened using the context defined by the news articles containing
the term “economy”.

former is related to immigration news (with keywords such as “border patrol”
and “u.s. border”), the latter is highly related to sports and arts news (with
keywords, such as “Hamilton” —the name of a British Formulal driver—,
“spectator”, “art”, and “theater”).

Table 5.2, on the other hand, shows sample pairs of concepts with most
positive, neutral, and most negative impact when the set of documents used
for extended-vector computation are limited to those containing the key-
word “economy”. As can be seen here, the content of the economy related
news articles significantly strengthen the relationships between geographic
concepts pairs, “United States”-“China”, “United States”-“Japan”,* United
States”-“Taiwan” and “Furope”-“Russia”. It is important to note that, as
expected, the sets of concept pairs that are most positively and most neg-
atively impacted (i.e., strengthened and weakened) are different when the
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user’s focus is different.

5.4.3 Explaining the Relationships between Concepts in a
given Context

Given a document corpus, CoSeNa can explain the relationships among the
concepts in the associated meta-data in terms of keywords extracted from
the corpus or explain the relationships among the keywords in terms of
the concepts. In order to analyze these semantic relationships between a
pair of concepts, we study the extended-vectors, ev, associated to the nodes
corresponding to these concepts in the KbC graph and search for those
keyword dimensions (representing the keywords in the KbC graph) which
enabled the relationship between these concepts.

More specifically given two taxonomy concepts ¢; and c¢;j, we rank those
keywords that occur in both extended-vectors, €t., and €v.;, in terms of their
contribution to the relationship between the corresponding concepts. Since
the similarity between two extended-vectors are computed based on cosine
similarity, we measure the contribution of the keyword k to the concepts ¢;
and c; as follows:

contribution(k) = €v., k] - €ve, [k].

After we order the keywords based on their contribution to the relation-
ship of the considered concepts, we select those keywords with the highest
contribution.

Note that the process of selecting the concepts that explain the relation-
ship between two keywords is similar: in this case, we analyze the extended-
vectors of the keywords nodes in the KbC graph and compute and rank the
contributions of the concepts in the extended-vectors.

Note that since the extended-vectors reflect both taxonomical as well
as corpus contexts selected by the user, this approach permits understand-
ing the context-specific relationships between two taxonomical concepts or
keywords.

Table 5.3 reports the most relevant terms that caused the strengthening
of the relationships between the geographic concepts pairs reported in Ta-
ble 5.1; as explained before, the listed keywords are shared by the extended-
vectors of the pair of concepts, and contributed strongly to the creation of
the semantic links in the KbC graph (Section 5.2.4). For example, con-
sidering the geographical concepts “Florida” and “Cuba”, the strength of
this semantic relationship is based on terms as “FElian Gonzalez” — a young
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Concept 1 Concept 2 Keywords
Cuba Florida Elian Gonzalez, immigration, Naturalization Service, Miami
Europe Iran security, Middle East, intelligence, petroleum
Iraq United States weapon, defense, gulf war, inspection
Afghanistan | United Stated taliban, terrorism, Bin Laden, Pakistan

Table 5.3: The most relevant terms, in the extended-vectors, that guide
the strengthening of the relationships between concepts using the context
defined by the entire corpus of news articles.

Concept 1 Concept 2 Keywords
United States China World Trade Organization, Clinton, globalization, cooperation
United States Japan technology, consumer, investor, sony
United States Taiwan independence, threat, negotiation, tension
Europe Russia agreement, energy, Ukraine, crisis

Table 5.4: The most relevant terms, in the extended-vectors, that guide
the strengthening of the relationships between concepts using the context
defined by the news articles containing the term “economy”.

Cuban boy who was at the center of a controversy involving the governments
of Cuba and the United States —, “immigration”, “Naturalization Service”
and “Miams” that help define the nature of the relationship.

On the other hand, when we focus on the KbC graph created based on
the subset of documents related to “economy” (Table 5.4), it is possible to
note that the terms that caused the strengthening of the relationships among
geographical concepts are strictly related to the economic domain. For ex-
ample, the relationships between “United States” and “China” has been
strengthened (Table 5.2) based on terms as “World Trade Organization” or
“globalization” that represent highly focussed keywords in the considered
domain. Therefore, the KbC graph reflects the context in which it is cre-
ated and can be used for explaining the relationships between the concepts
of interest within the given context.

5.4.4 Identifying Dominant Concepts and Keywords in a
Given Context

As we mentioned earlier, CoSeNa can leverage the KbC graph for identifying
dominant concepts and keywords in a given context. For this, CoSeNa relies
on a random-walk based technique that mimics the behavior of a sentient
being that navigates over the KbC graph in a way that reflects the strengths
of the links. The key observation, also used in web link analysis [110] and
social network analysis [117], is that if this navigation process continues
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indefinitely, the sentient being will spend most of its time on (concept and
keyword) nodes that are strongly linked to the rest of the graph. Therefore,
if one can measure the portion of the time the sentient being spends during
its infinite random walk on the KbC on a given node, then this can be
used to measure the dominance score of the corresponding concept or the
keyword.

In CoSeNa, we are relying on a PageRank [110] like algorithm to compute
the dominance scores. More specifically, the authority of a term (a keyword
or concept in our KbC graph) depends on the number and the authority of
its connected nodes. Hence, given a term t; € (Vo U Vi), its dominance is
defined based on the authorities of its neighbors as follows:

dom(t;) = d x Z

t]'E’in(ti)

where d € (0,1) is a dumping factor which represents the probability with
which the sentient being will simply navigate from one node in the KbC
graph to another and (1 — d) represents the probability with which it will
jump on an arbitrary node in the graph (d is often set to 0.85 [110]),
out(t) is a function that returns the set of terms that have an incoming edge
from ¢ and in(t) returns the set of terms in the KbC graph that have an
outoing edge pointing to t. Since the definition is recursive, in practice, the
dominance values are calculated using an iterative algorithm, where, at the
initial instant, each dominance value is initialized to:

1
dom” t) = —————
(t:) Ve U V|

Then, at each step, s, the algorithm recomputes the dominance values based
on the dominance scores of the previous step::

dom*~1(t;)
|out (t;)]

dom®(t;) = d x Z

tj Gin(ti)

+(1—d)

In Tables 5.5(a) and (b) the most dominant keywords and concepts based
on the full document set are reported. When the full data set is considered,
most of dominant terms coming from the considered corpus (Table 5.5(a))
are political (names of american politicians or general terms semantically
related to politics) and technology related. Similarly, the most dominant
geographical concepts (Table 5.5(b)) represent the countries (such as “Is-
rael”, “Lebanon”, “China”, “Russia”, “Cuba”, “Colombia”, and “Iraq”)
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Ranking || Keyword Node | Dominance value Ranking Concept Node | Dominance value
1st Al Gore 0.0032 1st Israel 5.6029E-4
2nd George Bush 0.0028 2nd Miami 4.4354E-4
3th John McCain 0.0015 3th Lebanon 3.6508E-4
4th government 0.0013 4th United States 3.4079E-4
5th computer 0.0012 5th China 3.1240E-4
6th internet 0.0011 6th Russia 2.5890E-4
7th voter 0.0010 7th Cuba 2.2968E-4
8th democrat 9.7403E-4 8th New York 1.4158E-4
9th woman 9.1351E-4 9th Colombia 9.7460E-5
10th technology 7.6794E-4 10th Iraq 9.2171E-5

(a) Node of KbC graph from the corpus
(using all the available articles)

(b) Node of KbC graph from the taxonomy
(using all the available articles)

Table 5.5: (a) The most dominant keyword nodes on the KbC graph gen-
erated using the entire New York Times corpus and (b) the most dominant
concept nodes on the KbC graph generated using the same document corpus.

Ranking || Keyword Node | Dominance value Ranking || Concept Node | Dominance value
1st George Bush 0.0027 1st United States 0.0012
2nd Al Gore 0.0026 2nd China 6.6503E-4
3th percent 0.0020 3th Israel 4.9638E-4
4th government 0.0016 4th Russia 3.4715E-4
5th White House 0.0013 5th Mexico 2.6899E-4
6th statesman 0.0012 6th Japan 2.6759E-4
7th United States 0.0012 7th New York 2.6169E-4
8th business 9.3666E-4 8th Argentina 2.1334E-4
9th .com 7.7473E-4 9th Zimbabwe 1.6380E-4
10th economy 7.7328E-4 10th Taiwan 1.5477E-5

(a) Node of KbC graph from the corpus
(using all the “economy” articles)

(b) Node of KbC graph from the taxonomy
(using all the “economy” articles)

Table 5.6: (a) The most dominant keyword nodes (on the KbC graph gen-
erated using the “economy” related subset of the New York Times corpus)
and (b) the most dominant geographical concept nodes on the KbC graph
generated using the same document subset.

and cities (such as “Miami” —which is related to “Cuba”— and “New York”)
related to foreign political and economic relationships of the United States
in the period covered by the selected corpus.

In contrast, in Tables 5.6(a) and (b) the most dominant keywords and
concepts based on the subset of corpus containing the term “economy” are
reported. As can be seen in these tables, when only the economy related
subset is considered, the most dominant keywords and the most dominant
concepts reflect the considered corpus context and highlight the economic
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focus of this subset of news articles.

In conclusion, we proposed a novel keywords-by-concepts (KbC) graph,
which is a weighted graph constructed by a tight integration of adapted
domain meta-data (considered as the semantic context) with the keywords
extracted from the available corpus of documents. KbC graph is then lever-
aged for developing a novel a Context-based Search and Navigation (CoSeNa)
system for context-aware navigation and document retrieval.

The unique aspect of our approach is that it mines emerging topic corre-
lations within the data, exploiting both statistical information coming from
the document corpus and the structured knowledge represented by the input
taxonomy. The case study shows how this approach enables contextually-
informed strengthening and weakening of semantic links between different
concepts.
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Chapter 6

Adaptation of Hierarchical
Meta-Data for Data Table
Management

In Chapter 4, we described ANITA [24], our method to adapt a hierarchical
meta-data structure to a large set of text documents; in Chapter 5, we pre-
sented our Cosena system [25, 26] that leverages this optimized structure
to guide the user for an efficient exploration of the corpus. But considering
the many different possibilities of the data storage, it can be very limiting
to examinate only text corpora cases. We argue that the efficiency or the
goodness of the adaptation approach is not affected by the format of the
data corpus used during the process. To support our claim, in this Chapter,
we will focus on a different, widely used data format, and we will consider
relational tables. We will analyze different techniques to extract and ana-
lyze the data (as done for text entries associated to categorization nodes) in
order to perform adaptations of the related hierarachical meta-data struc-
tures [20]. In fact, considering data table formats with millions of entries
and dozens of different attributes, we need to optimize our approach in or-
der to handle those large amount of data and provide, as done for the text
corpora, novel mechanisms to explore them (by significantly reducing the
number of entries).

6.1 Preliminary Motivations

Considering the many scenarios where it is hard to display complete data
sets, formed in many cases by millions of tuples and dozens of different
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attributes, there is an emerging need for novel methods to explore these
large amount of data.

Consider, for example, a scientist exploring the Digital Archaeologial
Record (tDAR/FICSR) [18, 120, 143], a digital library which archives and
provides access to a large number of diverse data sets, collected by different
researchers within the context of different projects and deposited to tDAR
for sharing. When this scientist poses a search query through the system, her
query might match many potentially relevant databases and data tables. For
this scientist to be able to explore the multitude of candidate data resources
as quickly and effectively as possible, data reduction techniques are needed.

Based on these considerations, one of the possible exploration approach
relies on the idea of summarization: in fact, a summarization process takes
as input a data table and returns a reduced version of it, permitting the user
to analyze only few entries that represent the general trends. This abridged
version of the data table needs to minimize the information loss (we will for-
malize in the following Sections this concept) due to the reduction in details;
in particular each tuple in the original table needs to be represented, as in
the summary, with a sufficiently similar tuple. Moreover, each tuple must
be sufficiently different from other tuples to ensure that this summarized
real-estate is not wasted.

Obviously, the result provides tuples with less precision than the original,
but still informative of the content of the database; in fact, this reduced form
can then be presented to the user for exploration or be used as input for
advanced data mining processes.

Meta-data hierarchies have been commonly used for these purposes [28].
In fact, in [143], the authors have shown that meta-data hierarchies as-
sociated to the attributes of the tables can also be used to support table
summarization. The table summarization process can benefit significantly
from any prior knowledge about acceptable value clustering alternatives.
When available, meta-data, such as value hierarchies (like the ones shown
in Figure 6.1) associated to the attributes of the tables, can help greatly
reduce the resulting information loss.

Consider, for example, Table 6.1 (a) which shows a data table consisting
of 6 rows. If the user is interested in understanding the general trends
expressed by this table (based on the attribute pair, (Age, Location)), she
may consider an abridged version where aggregation values are visualized
in only 2 tuples; thus, using these aggregation values (extracted from the
meta-data presented in Figure 6.1), it is possible to obtain a summary as in
Table 6.1(b) that gives a general idea about the arguments expressed by the
original table. In this case, the summary presents to the user the idea that
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Figure 6.1: Value hierarchy for attribute Age (a) and Location (b); directed
edges denote the clustering/summarization direction (taken from [143]).

[ Name [ Age [ Location |
John 12 Phoenix
Sharon 19 Los Angeles
Mary 19 San Diego
Peter 22 Baltimore
James 22 Frederick
Alice 27 Baltimore
(a) Data table

[ Name [[ Age [ Location
- 1* Southwest
- 2% Maryland
(b) Summarized table

Table 6.1: (a) A database and (b) a summary on the (Age, Location) pair
using hierarchies in Figure 6.1 (also taken from [143]).

two main entities are expressed in the original table; the first one represents
people living in Soutwest (of United States) and the second one reports
an entity about a community living in Maryland. Thus, considering this
informative summary, the user can explore the data reported by the original
table by analyzing human-understandable generalization values, obtained
by the considered meta-data.

Based on these observations, we note that table summarization, whether
carried out through data analysis performed on the table from scratch or
supported through already available meta-data, is an expensive operation.
For example, the computational cost of the meta-data supported table sum-



114CHAPTER 6. ADAPTATION OF META-DATA FOR DATA TABLE

(a) Alternative #1 ) Alternative #2

-

Figure 6.2: Two possible reductions of the location hierarchy in Fig-
ure 6.1(b).

marization process is exponential in the depth of the hierarchy (i.e., the
number of alternative value clustering strategies) [143, 137].

Thus, considering this very important problem, the key observation driv-
ing this part of the thesis is that the speed of the summarization process can
be significantly improved when the meta-data structures, used for support-
ing summarization, are pre-processed to reduce their unproductive details.
The pre-processing of the meta-data to eliminate details not relevant for
obtaining a table summary, however, needs to be performed carefully to en-
sure that it does not add significant amounts of additional loss to the table
summarization process.

For example, while the reduced hierarchy in Figure 6.2(a) would still give
the table summary in Table 6.1(b), the alternative in Figure 6.2(b) would
cause further loss in the table summary. Thus, intuitively, in this context a
good reduction of the given metadata is the one that leads to high-quality
table summaries.

Then, based on these assumptions, we propose our tRedux algorithm
for meta-data hierarchy pre-processing and reduction based on data table
format [20]. Our hierarchy reduction process eliminates the details in the
meta-data that are irrelevant for general exploration purposes.

More in details, our approach to meta-data hierarchy preprocessing and
reduction consists of three steps:

Step I: create a graph representing the structural distances between the nodes
in the given meta-data structure as well as the distribution of node
labels in the database;

Step II: partition the resulting graph into disjoint sub-graphs based on connec-
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tivity analysis; and

Step III: select a representative label for each partition and reconstruct a meta-
data tree.

Before analyzing our meta-data hierarchy adaptation method, in Sec-
tion 6.2 we introduce the concept of wvalue clustering meta-data related to
data table. Moreover, in Section 6.4 we formalize the table summarization
problem and we introduce the quality measures for the table summaries. In
addition, we will also explain how to apply hierarchical meta-data structures
to the summarization problem.

6.2 Value Clustering Meta-Data

A value clustering meta-data is a tree H(V, E) where V encodes values and
clustering-identifiers (e.g., high-level concepts or cluster labels, such as “1*”
in Figure 6.1(a), and E contains acceptable value clustering relationships.
A value clustering hierarchy, H, is a tree H(V, E):

o v =(id:value) € V where v.id is the node id in the tree and v.value
is either a value in the database or a value clustering encoded by the
node.

e e=v; —vj € E is a directed edge denoting that the value encoded by
the node v; can be clustered under the value encoded by the node v;.

Those nodes in V' which correspond to the attribute values that are
originally in the database do not have any outgoing edges in F; i.e., they
form the leaves of the meta-data hierarchy.

Given an attribute value in the data table T" and a value hierarchy cor-
responding to that attribute, thus, we can define alternative clusterings as
paths on the corresponding hierarchy. In fact, given a value clustering hier-

archy H, a meta-data node v; is a clustering of a meta-data node v;, denoted
by

v; 2,4 fIpath p=v;~v; € H.

We also say that v; covers v;.
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6.3 Tuple-Clustering and Table Summary

Let us consider a data table, T, and a set, SA, of attributes. Roughly
speaking, our purpose is to find another relation 7" which clusters the values
in T such that 7" summarizes T with respect to the considered attributes.
Based on the above, in the following, we formalize the concept of tuple
summarization.

Let t be a tuple on attributes SA = {Q1,---,Qq}; t' is said to be a
clustering of the tuple, ¢, (on attributes SA) iff Vi€ [1, q]

o t'[Qi] =t[Qi] , or
e Jdpath p;=t'[Q;] ~t[Q;] in the corresponding value hierarchy H;.

In this work, we use t <t' as shorthand.

Given this definition of tuple-clustering, we can define the summary of
a table as a one-to-one and onto mapping which clusters the tuples of the
original table.

Given two data tables T and 7", and the summarization-attribute set
SA, T' is said to be a summary of T' on attributes in SA (T[SA] <T'[SA]
for short) iff there is a one-to-one and onto mapping, u, from the tuples in
T[SA] to T'[SA], such that

Vit € T[SA], t 2 pu(t)

Here, T[SA] and T[S A] are projections of the data tables T" and 7" on
summarization-attributes.

6.4 Table Summarization Process

The general idea of a summarization algorithm is to leverage the under-
lying redundancy (such as approximate functional dependencies and other
patterns) in the data to identify value and tuple clustering strategies that
represent the (almost) same information with a smaller number of data rep-
resentatives.

As introduced before, there are various meta-data supported table sum-
marization algorithms [143, 137, 83].

K-anonymization algorithms [137, 83], for example, obtain summaries of
the input tables based on available value hierarchies and given summariza-
tion parameter, k. Alphasum [143] and various others extend summarization
support with more general metadata structures.
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Without loss of generality, in this work, we use Samarati’s k-
anonymization algorithm [137] as the back-end table summarizer. In [137],
each unique tuple gets clustered with at least kK — 1 other similar tuples to
ensure that no single tuple can be uniquely identified. Given a table T', the
authors consider a subset,

Ai7 Ai+17 seey Al+n

of the attributes as the quasi-identifiers (i.e., those attributes that can
identify the tuples in the database). Thus, the summarization process en-
sures that each tuple is clustered with k£ — 1 others on their quasi identifier
attributes.

The algorithm uses attribute value hierarchies to ensure that the amount
of loss (i.e., value generalizations using the value hierarchies) is minimized.
For each attribute, the algorithm takes a walue clustering hierarchy which
describes the generalization /specialization relationship between the possible
values.

For example, consider a table with a “location” attribute. The meta-data
hierarchy represents all the relevant values in the corresponding domain
as the leaves of a tree (Figure 6.1(b)). The internal nodes in the value
hierarchy will correspond to appropriate (geographic or political) clusterings
of countries.

Thus, in a summary, an internal node of the hierarchy can be used to
cluster all the leaves below it using a more general label. If in the summary
a leaf value is used, this gives zero generalization (g = 0); if, on the other
hand, a leaf at depth d is replaced with an internal node at depth d’, this
causes g = d — d’ steps of generalization; of course, by picking clusters closer
to the root, the algorithm will be able to summarize more easily. On the
other hand, more general cluster labels also cause higher degree of knowledge
relaxation. In the next Sections we will refer to the knowledge relaxation
due to the use of generalizing clusters as dilution.

Among all possible clusterings that put each tuple with k—1 other similar
ones, [137] aims to find those that require minimal generalizations; i.e., the
amount of distortion in the data needed to achieve the clustering is as small
as possible. Intuitively, if there is a generalization at depth d that puts all
tuples into clusters of size k, then there will be generalizations of level d’ < d
that also cluster all tuples into clusters of size at least k, but will have more
loss; conversely, if one can establish that there is no generalization at level
d that is a k-clustering, then it follows that there are no other clustering of
level d’ > d that can cluster all tuples into clusters of size at least k. Relying
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on the fact that for a given attribute, applicable domain generalizations are
in total order and that each generalization step in this total order has the
same cost, [137] develops a binary search scheme to achieve savings in time?.
It starts evaluating generalization levels from the middle-level to see if there

is a corresponding k-clustering solution:

e if there is, then the algorithm tries to find another solution with less
generalization by jumping to the central point of the half path with
lower generalization;

e if there is none, on the other hand, the algorithm tries to find a so-
lution by jumping to the central point of the half path with higher
generalization.

The process continues in this binary search until a generalization level
such that no solution with a lower generalization exists is found.

Unfortunately, this and other meta-data generalization based algorithms,
including [83] and [8], are all exponential in the number of attributes that
need summarization?. When there is a single attribute to summarize, for
a hierarchy, H, of depth, depth(H), the algorithm considers log(depth(H))
alternative clustering strategies. When there are m attributes to consider,
however, the maximum degree of generalization is ), ., depth(H;), where
all attributes are generalized to the max, causing the greatest amount of loss.
In this case, the algorithm considers log(> , -, ,, depth(H;)) alternative gen-
eralization levels on the average; moreover, for each generalization level, g,
the algorithm has to consider all combinations of attribute generalizations
such that (}°,.;<,,9i) = ¢. Since in general, there can be exponentially
many such combinations, the worst case time cost of the algorithm is expo-
nential in the number of attributes.

One problem with using Samarati’s algorithm [137] as the back-end table
summarizer is that it assumes balanced meta-data hierarchies as input. In
order to perform table summarization using unbalanced input meta-data
hierarchies, we first balance the input hierarchies by introducing ghost nodes
that fill the empty spots in the hierarchy.

As shown in Figure 6.3, these ghost nodes act as surrogates of the closest
ancestors of the leaf nodes that are out of balance: in this example, in order

1[83] relies on the same observation to develop an algorithm which achieves attribute-
based k-anonymization one attribute at a time, while pruning unproductive attribute
generalization strategies. [8] further assumes an attribute order and attribute-value order
to develop a top-down framework with significant pruning opportunities.

2In fact the problem is NP-hard [143]
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Figure 6.3: Ghost nodes in unbalanced hierarchy.

to put N at the same level of the other leaves, we introduce a ghost node
between N and its parent A (Figure 6.3(b)). The ghost node is also labeled
A as the parent. Note that, whether N is generalized to its original parent
or the new (ghost) node, it will be replaced in the summarized table with
A, therefore, this transformation does not result in additional loss.

6.4.1 Quality of a Table Summary

Information-based measures of quality leverage statistical knowledge, for
example the knowledge about data frequencies, to measure information loss.
One advantage of the use of meta-data hierarchies for table reduction is
that the degree of loss resulting from the summarization process, can be
quantified and explicitly minimized using the available value hierarchies.

Unlike purely numeric information loss measures, such as mean squared
error, and statistical measures, such as entropy, classification, discernibility,
and certainty [8, 68, 89, 51], knowledge about value hierarchies provides
a mechanism to judge the significance of the distortion within the given
application domain [137, 17, 158].

For example, a commonly used technique for measuring the amount of
loss during the summarization process is to count the number of generaliza-
tion steps required to obtain the summary [137, 8, 83]: given a generalization
hierarchy, each step followed to achieve the value clustering is considered one
unit of loss.

The weights of the value generalization alternatives may also encode
different wutilities including statistical information loss measures [129, 8, 17]
and structural information. In structure-based method [123], the distance
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between two nodes in a hierarchy is measured as the sum of the distance
weights of edges between them: the weight of an edge between a parent
concept and a child is measured based on the structural clues available in
the hierarchy, such as depth (the deeper the edge in the hierarchy, the less
information loss associated to the edge; e.g., in Figure 6.1(a), San Diego is
more related to Los Angeles than California is to Arizona) and local density
of the concepts (the denser the hierarchy, the smaller the semantic distance
between the concepts in the neighborhood).

Let t and t’ be two tuples on attributes SA= {Q1,--- ,Qq}, such that ¢t <
t’. Then the cost of the corresponding clustering strategy is defined through
a monotonic combination function, >, of the penalty of the clustering
along each individual summarization-attribute:

At=t)= " A,
1<i<gq
where
o A; =0, if t'[Qi] = t[Q]

o A; = A(t[Q;],'[Q]) (i-e., the minimal number of edges that separates
t[Q4] to t'[Q;] in the corresponding original hierarchy) otherwise.

Let us consider a data table T', and a set SA of summarization attributes.
Let T' be a summary of T on attributes in SA (i.e., T[SA] X T'[SA]). We use
two quality measures to evaluate table summaries: dilution and diversity.

Definition 6.4.1 (Dilution (dl))

(T, T, S A) = |;| S AHSA], pu(HSAD)).

teT

The smaller the degree of dilution, the smaller is the amount of loss and
the higher is the quality of the summary.

Definition 6.4.2 (Diversity (div))

2
. / _
div(T",SA) = T =1 E At [SA], ta[SA]).
tl,tQET’(tlitz)

The greater the diversity, the higher is the quality of the summary.

Therefore, given a table T and the set of summarization attributes, SA,
the goal of the summarization algorithm is to find a summary such that the
degree of dilution is minimized, yet the diversity is maximized.
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6.5 Meta-data hierarchy adaptation

As we explained in the introduction, the table summarization process can
be prohibitively costly, especially when the number of relevant attributes is
large. In this Section, we propose our tRedux algorithm for value hierarchy
reduction[20]. As already explained, our meta-data hierarchy adaptation
approach firstly creates a graph representing the structural distances be-
tween the nodes in the meta-data and then divides the resulting graph into
disjoint sub-graphs based on connectivity analysis. Then, it selects a rep-
resentative label for each partition and reconstructs a meta-data hierarchy.
In the following Sections we explain all these steps in details.

6.5.1 Step I: Constructing the Node Structural-
Similarity /Occurrence Graph

Naturally, the most effective way to ensure the quality of the hierarchical
meta-data structure is to cluster those nodes whose labels would be judged
to be similar by human users of the system. Simultaneously, the cluster
should also represent the joint-distribution of the node labels in the database.
Therefore, the first step of the process is to create a graph that represents
both the structural similarities of the nodes and the label co-occurrence in
the database.

More formally, let us consider a data table T" and a set S'A of attributes.
Let H;(V;, E;) be a value hierarchy corresponding to the attribute @Q; € SA.
In Step I of the adaptation method, the algorithm constructs a complete
weighted directed graph, G;(V;, E/, w), where the set of vertices, V; =
{v1,...,vn}, corresponds to the concepts in the input hierarchy. The weights
(w: E— RT) associated to the edges in E represent both

e similarities between pairs of concepts in the taxonomy, and
e occurrences of data values in the database.

In structure-based methods, the similarity between two nodes in a tax-
onomy is generally measured by the distance between them [123] or the sum
of the edge weights along the shortest path connecting the concepts [130].
Information-based methods leverage the available data corpus to extract ad-
ditional information, such as frequency, for corpora-sensitive similarity eval-
uation. Again, as described in Section 3.1.1, we first associate a node vector
to each node in the meta-data (the vector represents the relationship of this
node with the rest of the nodes in the hierarchy) and, then, we compare the
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vectors to quantify how structurally similar any pairs of nodes are. We use
the cosine vector similarity measure to quantify the structural similarities
among the taxonomy nodes; comparisons against other approaches on avail-
able human-generated benchmark data [49, 129] showed that this concept
vectorization improves the correlation of the resulting similarity judgments
to human common sense [76]. More specifically, given the data table T', for
each value hierarchy, H;(V;, E;), we construct a complete directed graph,
Gi(Vi, B}, w): for each pair v, to v of nodes in the taxonomy H;, the edge
between the corresponding nodes in G; has the following weight:

W({Vay v6)) = D €Dy, [t.Qi] X G, [£.Qu),

teT

where t.Q); is the value of tuple ¢ for attribute @Q; and ¢, [y] gives the CP/CV
value for node z along the vector dimension corresponding to the node y. In-
tuitively, the weight w((vs, vp)) measures the aggregate similarity between
the meta-data nodes v, and v, in the value hierarchy for all the values
in the corresponding attribute in the database. Thus, the resulting graph
Gi(Vi, E, w) represents the structural relationships in H;(V;, E;) as well as
the distribution of the data in the corresponding summarization attribute,
Q;, in the database: the weight of an edge is high if the concepts are struc-
turally related in the value hierarchy, H;, and the number of tuples in the
corresponding attribute that are highly related to these concepts is also high.

Lastly, this graph G;(V;, E!, w) is thinned by applying a locally adaptive
edge thinning algorithm [5, 114]. For each v, in V, we consider the set,
out(v,), of all outgoing edges:

1. we first sort the edges in out(v,) in decreasing order of weights;

2. next, we compute the mazimum drop in consecutive weights; and iden-
tify the corresponding maz-drop point in the sorted list of edges;

3. we, then, compute the average drop (between consecutive entities) for
all those edges that are ranked before the identified max-drop drop
point.

4. the first weight drop which is higher than the computed average drop
is referred to as the critical-drop. All the edges in out(v,) beyond this
critical-drop point are eliminated from E.

This final thinning process ensures that only those edges that represent
strongest relationships are maintained (note that, since the graph is directed
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(a)

Figure 6.4: Constructing the node graph based on the taxonomical structure
of the hierarchy in Figure 6.1(a). The thickness of the edges represent their
weights (omitted for clarity).

and the thinning process is asymmetrical, it is possible that the E! will
contain a link from v, to v, but not vice versa).

In Figure 6.4 an example, referring to the meta-data hierarchy previously
presented in Figure 6.1(a), is shown; in Figure 6.4(a), the complete graph
is created by connecting the nodes each other based on the distribution
of the data (the weights of the edges are visually represented through the
thickness of the edges). In Figure 6.4(b), the graph is finally thinned by only
maintaining the edges with highest weights (that represent the strongest
relationships).

6.5.2 Step II: Balanced Hierarchy Partitioning

In the next step, the resulting weighted graph G;(V;, E!, w) is partitioned
based on its connectivity and the weights. In theory, any existing graph
partitioning algorithm (e.g. [90, 106, 43, 56, 47, 73]) can be used in this stage.
Many of these (including METIS [73], which we evaluate in the experiments
Section), however, require advance knowledge about the number of clusters.

Thus, in practice, since the user will not be likely to have a target meta-
data size, an adaptation algorithm which can partition the input graph based
on its inherent structure, without requiring an input number of clusters,
may be more suitable. Consequently, without loss of generality, we rely on a
random walk-based graph partitioning algorithm [57] that does not require
an advance knowledge of the number of resulting clusters.
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A random walk on a graph, G(V, E), is simply a Markov chain whose
state at any time is described by a vertex of GG and the transition probability
is distributed equally among all outgoing edges. The transition probability
distribution for a Markov model is often represented as an adjacency matrix.
Here, we provide a brief overview of the clustering strategy we adopted. A
stochastic process is said to be Markovian if the conditional probability dis-
tributions of the future states depend only on the present. A Markov chain
is a discrete-time stochastic process which is conditionally independent of
the past states. The components of the first singular vector [9] of the adja-
cency matrix of a random walk on a graph will give the portion of the time
spent at each node after an infinite run. The singular vector corresponding
to the second eigenvalue, on the other hand, is known to serve as a proximity
measure for how long it takes for the walk to reach each vertex.

Considering this clustering approach, given the graph G;(V;, Ef, w) con-
structed in the previous step we derive a random walk graph by associating
the following transition probability to edges: let e be an edge from vertex
v, to vertex vp; then, the corresponding probability of transition is

w((va; vp))
Zek cout(vy) W (ex) .

Pab =

These probabilities are represented in the form of an adjacency matrix
M;.

Intuitively, two vertices in the same cluster should be quickly reachable
from each other through a random walk. It is also possible to argue that
if two nodes are in the same cluster, then the corresponding values in the
second eigenvector must be close to each other.

Consequently, the random walks clustering approach proposes to use the
values in the second eigenvector of the graph (which measure the proximity
on the random walk) as the measure of being in the same cluster. In partic-
ular, the graph is partitioned by looking for significant jumps in the values
of the second eigenvector of M;. Thus, at each iteration of the algorithm,
[57] lowers the transition probabilities of the edges that connect two verteces
of different clusters (called separetors) and increases those connecting two
verteces of the same cluster.

An example is shown in Figure 6.5; based on the thinned graph presented
in Figure 6.4(b), the random walks clustering algorithm retrieved the edges
that separate the clusters (called separators and identified in the Figure with
dotted lines).

Existing random-walk based clustering algorithms, such as [57], consider
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a) lrst iteration
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(b) 2nd iteration
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(c) 3rd iteration

Figure 6.5: Random walks clustering algorithm applied on the graph pre-
sented in Figure 6.4(b); the transition probabilities are visually represented
by the thickness of the edges (the values are omitted in the Figure for
clarity). At each run, the algorithm lowers such transition probabilities
that identify cluster separators while it increases those that connect entities
within the same cluster.

only the connectivity and the weights and do not seek to return partitions
balanced in terms of the number of vertices. In other words, the number
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Figure 6.6: Node graph partition example: based on the separators retrieved
by applying the random walks clustering approach [57] (Figure 6.5), 3 par-
titions have been found.

and the sizes of the clusters is strictly dependent on the connectivity of
the considered graph. However, we may not want an adapted meta-data,
where some summary nodes are precise (and represent only a few nodes in
the original value hierarchy), whereas others are vague (and represent large
numbers of nodes). As we have mentioned earlier, having concept clusters of
widely varying sizes may be disadvantageous, as large concept clusters will
be more vague than smaller concept clusters. An equally distributed set of
clusters, on the other hand, would permit to generate a more informative
and representative adaptation of the initial taxonomy, as each new entry
in the reduced taxonomy represents (approximately) the same number of
original nodes.

Therefore, we follow the initial partitioning approach with a re-
balancing step. Let H;(V;, ;) be a hierarchical meta-data and P; =
{P;1,...,Pim} be the set of partitions obtained through the random walk
process.

In Figure 6.6 an example is shown; the meta-data hierarchy example pro-
posed in Figure 6.1(a) is partitioned in 3 groups of nodes based on the ran-
dom walk partition approach applied on the graph shown in Figure 6.4(b).

At this point, considering the m obtained partitions, in order to promote
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balance in partitions, we introduce a tolerance value,

T= GM

m
that sets the maximum number of concepts that could be represented
by any partition. If a cluster, F; ;, contains too large a number of concepts,
then a set, &j, of extra vertices are picked and moved to other partitions.
This set of vertices are selected in such a way that the cost, cost(X;), of

displacement of the set of extra vertices among partitions is minimized.
The term cost(X;) is

> > wle) - > w(e;) |

va€X; \ ej€(edges(va)P;) e;j€(edges(vq)Ndest(vy))

where edges(vg) is the set of all incoming and outgoing edges to v, and
dest(v,) is the partition, other than P;, with the highest weighted connec-
tivity to v,. The vertices in X; and their destinations are selected through
a K-means like iterative improvement process. Obviously, this method is
strictly affected by the value of 0, that constrains the balancing effect of this
partitiong approach. In the experiment Section we will deeply study the use

of 6.

6.5.3 Step III: Meta-Data Hierarchy Re-construction

In order to construct the adapted meta-data hierarchy, we need to link the
partitions, obtained in the previous step, in the form of a tree structure. Fur-
thermore, for each partition, we need to pick a label describing the concepts
in the partition.

Partition Labeling

Considering a meta-data node, its label is important because it is what will
be presented to the user in the exploration process. Thus, considering our
partitions, we have to carefully select the appropriate labels in order to be
sufficiently representative of the cluster.

To this purpose, we adopt a labelling method similar to the one we
used in Section 4.2.3, in the context of the adaptation of domain meta-data
hierarchies to enhance the exploration of textual databases.

Let P; ; be a partition in P;. In order to pick a label for P; ;, we consider
the relationships of the vertices in P; ; in the original hierarchy H;. If there
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Figure 6.7: A sample taxonomy and its partitioning.

is a vertex, v, € F;; that dominates all the other vertices in the partition
(i.e., Vo, € P;j vy = vq), then v, is selected as the label. If there is no such
single vertex, then the minimal set, D;, of vertices covering the partition
P, ; (based on H;) is found and the set, D;, is used as the partition label.
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Partition Linking

The reduced hierarchical meta-data H; should preserve the original structure
of H; as much as possible. Partitions linking follows the same ideas at the
basis of the corresponding step (see Section 4.2.3) in the context of meta-
data hierarchy adaptation for navigation within textual corpora:

e The root of H] is the partition P; ; which contains the root vertex of
H;.

e Let us consider a pair, P; ; and P;, of partitions in P;. Let Ej;j, be the
set of edges in H; that go from the vertices in P; ; to vertices in P .
Similarly, let Ej ; be the set of edges in H; that go from the vertices
in P;; to vertices in P; ;.

If in H], P;; is an ancestor of P;j, then the broken set of edges in
Ej, ; will result in structural constraints that are violated. If P;y is
an ancestor of F; ;, then broken edges in E;; will result in structural
constraints that are violated. If neither is an ancestor of the other, on
the other hand, the edges in Fj ; U Ej, ; will determine the constraints
that are violated.

Let e = (vq, ) be an edge from partition P; j to P; . If e is broken,
then its cost (cost(e)) is the number of descendants of vy, in the original
hierarchy H also contained in P;; plus one (for v,). For example, in
Figure 6.7, if the edge between V; and K is broken, then the cost of
this edge is equal to 1 4+ [{O, N, L, M }| = 5.

Thus, the taxonomy H/, minimizing the errors due to structural con-
straint violations can be constructed by

1. creating a complete weighted directed graph, Gp(Vp, Ep,wp), of
partitions, where

- Vp =",
— FEp is the set of edges between all pairs of partitions, and
— wp((Pij, Pik)) = Xcep, , cost(e); and

J
2. finding a maximum spanning tree of Gp rooted at the partition
P; ; which contains the root of H;.

At this point, the original meta-data has been partitioned and a reduced
hierarchy has been reconstructed.
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6.6 Case Study

In this Section, in order to further clarify the proposed meta-data hierarchy
adaptation method, we analyze a real case study. We considered the real
Census Income data set (also known as Adult data set), extracted from
the 1994 Census database [4] (containing ~30K tuples and including 16
attributes), and we analyze and adapt the associated geographical value
hierarchy representing geographical aggregation values related to the Native
Country attribute. As reported before, the considered meta-data hierarchy
represents, as internal nodes, the possible aggregation values, and contains,
as leaves, all the different data values. The original hierarchy, containing 67
nodes, is shown in Figure 6.8.

As we already discussed, we believe that any pre-determined value hier-
archy is generally designed in order to widely describe the considered domain
knowledge for general purpose applications; thus, many un-necessary details,
corresponding to possible aggregation values, might be introducted in the
hierarchy. Thus, our assumption is that, if there are superfluous data ag-
gregation values, it is possibile to re-define and/or remove these nodes from
the hierarchy, depending on the distribution of the values in the considered
data table.

Therefore, considering our chosen case study domain, we apply the pro-
posed value hierarchy adaptation algorithm to adapt the structure to the
considered data (as show in Figure 6.9) and reduce the overall redundancy
while maintaining the most relevant data.

In this example, the granularity of the considered hierarchy is now re-
duced from 67 concepts to 50 concetps. We observe that, as opposed to the
text corpus case, the most visible reduction has been obtained at the highest
levels of the hierarchy. In fact, in this case the leaves have to be preserved in
the adapted hierarchy in order to be able to retrieve the original values rep-
resented in the data table. Thus, the algorithm performs its operations on
the internal nodes, reducing, where it is possible, the redundant information
and preserving those values that better represent the tuples. In fact, the al-
gorithm analyzes the distribution of the data over the considered meta-data
hierarchy (Section 6.5.1), and adapts the structure in order to represent with
a higher number of nodes branches that are very dense (and therefore, need
to be discriminated with a higher number of possibilities). In contrast, the
less representative branches will be significantly reduced, due to the fact that
they do not need a high number of aggregation values. For example, the node
“lands-middle-america” has been removed in the adapted hierarchy, simply
because the real data distribution on the original table does not justify its
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Figure 6.8: Geographical Value hierarchy containing the values (leaves in
the structure) related to the attribute Native Country of the Adult Data
Set [4].

presence; in fact, in case of data reduction processes, the algorithm reports
that its children nodes (“Honduras”, “Mezico”, “Guatemala”, etc.) could
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be summarized with the ancestor “middle-america”, without any significant
loss of information with respect to summarizing them with “lands-middle-
america”. Indeed, these data values are very rare on the original table, and
due to this characteristics, they do not need a specific aggregation value (or,
at least, it could be sacrified for reduction purposes).

It is also important to notice that, in contrast with the text corpora
case, the length of the node labels did not increase (i.e., labels have not
been merged to other labels). The interpretation of this behaviour is corre-
lated again to the data distribution. In fact, considering that the internal
nodes of the hierarchy are not represented at all in the original data table,
the proposed clustering strategy leverages at the maximum the meta-data
structure to group the data value (leaves in the taxonomy). Therefore, each
coherent group can be simply represented by its parent node (or a higher
ancestor, if necessary) reducing the cases in which it is necessary to merge
the labels to find a unique representative.

In conclusion, in this example, the value hierarchy has been reduced in
terms of number of internal nodes and re-defined in terms of its concept
relationships, in such a way to reflect the real data distribution. It is also
very important to notice that the new adapted meta-data structure is still
undestandable by human users and therefore usable for exploration pur-
poses. In the experimental part (Section 6.7) we will deeply analyze this
characteristic.

6.7 Experimental Evaluation

In this Section we consider the table input format, for evaluating our hier-
archical meta-data adaptation method.
Meta-data supported table summarization needs three inputs:

1. a table T to summarize with ¢ attributes;

2. a set of domain hierarchies D; (for each attribute which we want to
summarize), and

3. a parameter k that determines the minimum size of tuple clusters in
the summary.

Thus, we experimented with different data sets, meta-data hierarchies,
and k values. We evaluated our technique considering different types of data
sets (and therefore different types of domain generalization hierarchies). In
order to evaluate our method, we considered two different datasets:
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Figure 6.9: Adapted value hierarchy of the one proposed in Figure 6.8.

e Real dataset: we used the Census Income dataset (also known as Adult
dataset), extracted from the 1994 Census database [4]. This data set
contains ~50K tuples and includes 14 attributes.

e Synthetic dataset: we constructed sub-sets of tuples with different
properties in order to evaluate tReduz under different conditions (see
Section 6.7.2).

For both data sets, we varied the number of tuples in the data set.

For all experiments described in Section 6.7.1, we considered 7 different
subsets of tuples (from ~ 100 to ~ 800) for the Adult dataset and 6 different
subsets (from ~ 100 to ~ 1000) for the synthetic dataset.

We also varied the tuple count variance (t-var), which is defined as the
variance in the number of occurrences (in the input table) of the leaf values
of the hierarchy; this value was varied between 0 (i.e., uniform distribution)
and ~ 11 for Adult dataset and between 0 and ~ 15 for Synthetic dataset.
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We also experimented with different numbers (1,2 and 3) of attributes
in the summary. For each case, we considered different summarization re-
quirements, varying k in the set {5, 10,20, 30}.

In addition to the real and synthetic data, we also experimented with
real and synthetic domain hierarchies. The synthetic domain hierarchies
we used for the experiments also varied in structure (size and height). We
provide more details about the variations in the domain hierarchy structures
in Section 6.7.2.

Finally, we have also experimented with different partition balance tol-
erance values when creating the reduced taxonomies (see Section 6.5.3). We
varied the tolerance value, 6 in the set {1,1.5,2,3,4} (f < 1 is not meaning-
ful, # = 1 means balance, and 6 > 1 is increasingly lax in terms of balance
requirement — as we will see in Section 6.7.2, diversity and dilution is more
or less constant for § > 2, therefore this range is sufficient for observing the
impact of #). Unless explicitly stated, the default tolerance value, 6 = 2, is
used.

For all the experiments we used an Intel Core 2CPU @2,16GHz with
1GHz Ram.

6.7.1 Loss in Diversity and Dilution due to Reduced Meta-
data

Before we analyze the behavior of the tReduz-based table summarization
under different system parameters, we first compare dilution and diversity
behaviors of various alternative meta-data driven table summarization ap-
proaches. In particular, we compare the following alternative schemes:

e table summarization using the original hierarchies; in this scheme the
input hierarchies are not reduced.

e table summarization using hierarchies reduced by applying ¢Reduz.

e table summarization using hierarchies reduced by applying (instead
of tReduzx) k-METIS clustering [73] over the concept similarity graph
described in Section 6.5.1: the k.-METIS algorithm guarantees that all
partitions will be approximately equally distributed®. In these exper-
iments, we vary the number of partitions as 20%, 30%, 40% and 50%

3In the literature exists also i-METIS, that has an unbalance parameter which allows
the algorithm to deviate from an equal distribution. The A-METIS algorithm did not pro-
vide significantly better results than the k-METIS algorithm. So, the k-METIS algorithm
is preferable because of its shorter execution time [34]
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Figure 6.10: Comparisons among tReduz, original, and k-METIS ap-
proaches: (a) diversity-vs-time, (b) diversity-vs.-number of partitions,

dilution-vs-time, (c) dilution-vs-number of partitions.

of the number of nodes in the input hierarchy (METIS-0.2, -0.3, -0.4
and -0.5 in the charts).

The experiments reported in this Section are high-level averages of all
experiments carried out with varying system parameters. As we mentioned
above, we varied values of k, the number of tuples, the hierarchy size. Then,
for each alternative algorithm, we computed average diversity, average di-
lution, and average execution time and plotted them against each other to
observe the general, high-level trends without focusing on the impacts of
the specific system parameters. In Figure 6.10, the first scheme, “original’,
does not use hierarchy reduction, while the other schemes, “tRedux” and “k-
METIS”, are both instances of meta-data hierarchy reduction based table
summarization approach.
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Diversity vs. Time

Figure 6.10(a) shows the amount of diversity maintained by alternative
schemes against the amount of time required by the table summarization
algorithm. As can be seen in this figure, table summarization using the
original hierarchies provides the highest diversity; but also takes the great-
est amount of time. METIS algorithms with 40% and 50% hierarchy nodes
cause drops in the diversity, without any significant temporal gain. METIS
with 20% and 30% nodes result in some gains in time; but the highest gain
in time occurs when using tRedux for summaries. Most importantly though,
the diversity-vs-time behavior (highlighted by the slopes of the line segments
that connect the point corresponding to original summaries with the points
corresponding to the algorithms), is the best for tReduz. Overall, tReduz
provides a ~ 50% gain in execution time, with only a ~ 15% reduction in
diversity.

Diversity vs. # of Nodes in the Reduced Hierarchy

Figure 6.10(b) shows the diversity maintained by alternative schemes against
the number of nodes (partitions) in the reduced hierarchy. As expected,
there is a correlation with the number of nodes in the hierarchy with the
overall diversity. However, as can be seen comparing METIS with 20% of
nodes and tRedux results, tReduzx is able to maintain a similar amount of
diversity with smaller number of nodes in the hierarchy.

Dilution vs. Time

Figure 6.10(c) shows dilution? against table summarization time: the highest
absolute and relative (to dilution) time gains are achieved by the tRedux.

Dilution vs. # of Nodes in the Reduced Hierarchy

Figure 6.10(d) shows the dilution® caused by alternative schemes against the
number of nodes in the reduced hierarchy. As can be seen here, as expected,
the smaller the number of nodes in the hierarchy, the higher the resulting
dilution is. On the other hand, among the different metadata reduction

“4In this setting, we are using the agnostic avg combination function to compute dilution.
In these experiments, the effect of the dilution definition on the result were extremely
minute; thus charts considering other functions (min, max, sum) are omitted for the sake
of space.

5 Again, using agnostic avg combination function.
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schemes, tReduz has the best relative dilution behavior: a 66% drop in the
number of nodes in the hierarchy results in only a less than 20% increase in
dilution.

Summary

The results in this Section shows that tReduz is able to reduce the taxonomy
(based on its inherent structure, without requiring the size of the output
taxonomy as an input) in a way that provides the best diversity-time and
dilution-time trade-off. Algorithms, like k-METIS can be used as the base
graph partitioner if the user would like to reduce the sizes of the input
taxonomies beyond what is structurally recommendable (albeit at the cost
of further information loss).

6.7.2 Dissecting tRedux

We have looked at the high-level behavior of the various algorithms and seen
that metadata reduction based table summarization can provide significant
time gains, while resulting in relatively small increase in dilution and drop
in diversity. We have also seen that among alternative ways to taxonomy
reduction, tRedux has the best dilution-time and diversity-time behaviors.

In this Section, we look at the tRedux algorithm in greater detail and
study how different problem parameters affect dilution, diversity and time
behaviors of tReduz. In particular, we vary (a) the imbalance tolerance value,
6, (b) the number of tuples in the input table, (c) the value distributions in
the data, (d) the sizes of the hierarchies, and (e) the heights of the hierar-
chies, and compare the tRedur-supported summaries with summaries using
original hierarchies. We mostly experiment with synthetic data where we
can freely change various parameters and observe the behaviour of tRedux,
but we also include results with the Adults data set.

Overview

First, Figures 6.11(a),(b) and (c) bring together all experiment instances
(independent of their parameters) into three tables which plot performance
measures (time, dilution and diversity) for table summarization with the
original hierarchy against table summarization with tReduz. As the trend
line in Figure 6.11(a) shows, on the average the summarization times with
tReduz is just ~ 50% of the summarization times needed with the original
summary (i.e., summarization is 2x as fast when using tReduz) and this
behavior is highly consistent. Moreover, the average loss in terms of dilution
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Figure 6.11: Table summarization total results with and without tReduz.

(Figure 6.11(b)) is only ~ 12% higher when using a summarized taxonomy,
while the average loss in terms of diversity is ~ 21% (Figure 6.11(c)).

Next we consider the impact of the individual parameters on these three
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Figure 6.12: Dilution, diversity, partition size variance, and time for different
imbalance tolerance values.

measures.

Impact of the Partition Imbalance (© Parameter)

As introduced in Section 6.5.2, depending on the need, the user can balance
the resulting partitions by using the parameter 6. In fact, when reducing
input hierarchies, creating partitions with widely varying sizes might be
undesirable: some partitions in the reduced hierarchy will be more precise
(corresponding to only a few entries in the original hierarchy), while some
others will be very vague (corresponding to a large number of values). On the
other hand, requiring perfectly balanced partitions might also be counter-
productive since this may result in nodes in the re-constructed hierarchy that
are consisting of poorly related (non-homogeneous) concepts in the original
hierarchy.

Indeed, as shown in Figures 6.12(a) and (b), requiring strictly balanced
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Figure 6.13: (a) Dilution, (b) diversity, (¢) partition size variance, and (d)
time as a function of tuple value count variance.

partitions (6 = 1) results in a slightly higher dilution and lower diversity.
Any 0 > 2, however, provides the same performance; this is because for such
large 6 values there is no need to re-balance the partitions.

Thus, while we foresee that in most cases tRedux will be used with 6§ = 2,
we also recognize that some applications may require balanced partitions and
(as shown in Figure 6.12(c)), in these cases, 6 can be used to control the
balance of the partitions. Note that, since the number of partitions stays
the same, 6 does not affect the table summarization time (Figure 6.12(d)).
Notice that, while diversity and dilution stay constant for 6 >= 2, there is
no need to consider very high values of 6.

Impact of the Value Distribution in the Data Table

We also experimented with different value distributions in the data table.
Results for this setup are for a single attribute (with a balanced hierarchy
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with 127 nodes and 64 leaves) and 256 tuples in the table.

In this experiment, we varied the tuple count variance (t-var) of the
table between 0 and ~ 25 (in the case with t-var = 24.80, we have almost
all tuples distributed on only one leaf of the domain hierarchy and the other
leaves are only represented by one tuple each). For each t-var, we analyzed
3 different randomly generated sets of tuples. Each presented result is the
average of these three cases.

As can be seen in Figures 6.13(a) and (b), large variances in the tuple dis-
tributions negatively impact the dilution and diversity for summarization.
As expected, the original hierarchy provides better diversity and dilution
than t-Reduz, but is much slower Figure 6.13(d). As {-var increases, the
dilution, diversity, and execution time behaviors of ¢-Reduz and the original
scheme approach each other. This is because an increase in the count vari-
ation also causes an increase in the partition size variation (Figure 6.13(c))
and when the partition variances are higher, Samarati’s algorithm tends
to pick nodes closer to the root instead of analyzing combinations of the
internal nodes.

Impact of the Table Size

To observe the effect of the table size, we considered a summarization sce-
nario with a single attribute (having an unbalanced hierarchy with 31 nodes
and 16 leaves). We varied the database size from ~ 50 to ~ 5000000, with
x 10 increments. For these experiments, we set t-var to 0.

As these experiments show, as long as the tuples in the table are selected
using the same value distribution, independent of the size of the table, the
dilution and diversity stays the same. Figure 6.14(a),(b),(c) and (d) show
the obtained results. Note that the time cost of the original scheme increases
faster than the time cost of tRedux supported summarization as the table
size increases.

Effects of the Number of Nodes in the Input Hierarchies

In order to study the impact of the number of nodes in the input hierarchy,
we selected 6 different hierarchies with different number of nodes (57, 115,
230, 460, 921 and 1843 nodes) but having the same height (13 levels). For
each of the 6 considered cases, we analyzed 3 different random generated
hierarchies and the presented results are the averages of these. For these
experiments, we maintain t-var at 0.

The results in Figure 6.15(a) and (b) show that the dilution and diversity
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Figure 6.14: (a) Dilution, (b) diversity, (c) partition size variance, and (d)

time as a function of the number of tuples.

behaviors of tRedux are not affected by the number of nodes. As shown
in Figure 6.15(c), partition size variance p-var is also not affected by the
changes in the number of nodes. As shown in Figure 6.15(d), the number of
nodes affects the process in terms of execution time (because the algorithm
needs to consider more nodes as candidates for the summary); the benefits
of the tReduzr scheme is more apparent for larger hierarchies.

Effects of the Heights of the Input Hierarchies

For these experiments, we used 8 different hierarchies with the same numbers
of nodes (460 nodes of which 256 are leaves), but with different numbers of
levels (8 through 17). For each of these cases, we experimented with 3
different random generated hierarchies; the presented results are averages.
The table has 1024 tuples and has t-var of 0.
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Figure 6.15: (a) Dilution, (b) diversity, (c) partition size variance, and (d)
time as a function of hierarchy size.

As Figure 6.16(a) shows dilution of ¢-Redux is not affected by the height
of the hierarchy. This is largely because of the fact that the partition size
variance p-var is not affected by the changes in the hierarchy height (Fig-
ure 6.16(c)). The diversity of the summaries, however, increases with the
height of the hierarchy (Figure 6.16(b)): since diversity is measured by the
distances of the nodes in the hierarchy, when the height increases, the di-
versity also increases. The height of the hierarchy does not affect the time
cost of the summarization process for both tRedur and original alternatives
(Figure 6.16(d)).

Effect of the Number of Attributes in the Summary

Figure 6.17 shows the effect of the number of attributes. Each of the plots
includes results from many experiments (varying two data sets, number of
tuples in the table and t-var, number, sizes, and heights of hierarchies) in
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Figure 6.16: (a) Dilution, (b) diversity, (c) partition size variance, and (d)
time as a function of hierarchy height.

a single chart; these experiments are clustered in terms of the number of
attributes in the data being summarized and trend lines are drawn to help
observe the general trends.

Figure 6.17(a) shows that, for both Adult (red line) and synthetic
(dashed blue line) data sets, the amount of dilution increases with the num-
ber of attributes, but the loss due to tRedux stays more or less constant,
< 20%. On the synthetic data, diversity shows a ~ 10% increase in loss
when the number of attributes increase from 1 to 3; on the Adult data set,
however, the impact of the number of attributes is rather negligible. It is
also interesting to note that, on the Adult data set, the loss in diversity due
to the use of tRedux is very close to 0. As Figure 6.17(c) shows, the execution
time gain due to the use of tReduz increases with the number of attributes;
for the Adult set the gain increases from around 30% (i.e., ~ 1.5x as fast
as the original scheme) for the case with a single attribute to more than
40% (i.e., almost 2x as fast as the original scheme) for the case with three
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attributes.

In conclusion we have shown that, by pre-processing input value hier-
archies before they are used in metadata supported table summarization
process, we can significantly reduce the summarization cost, without caus-
ing significant quality degradations in the resulting table summaries. We
have also introduced a novel hierarchy summarization approach, tReduz, tai-
lored towards this task and have shown that this approach provides the best
time gain vs. quality trade-off against alternative schemes. We studied how
the pre-conditions could affect the table summarization process and show
which parameters could change and vary the results of the entire process.
We evaluated different experiments, considering all the possible parameters
(different number hierarchies and different datasets), and compared tRe-
dux results with the k-METIS famous clustering approach, highlighting the
benefits that we can obtain using our approach. Therefore, tRedux provides
a novel metadata pre-processing method that can reduce significantly the
amount of time needed by a table summarization process, providing also
a parameter (the tolerance value) that permits to leverage the size of the
partitions, and therefore, to adapt the method to different summarization
needs.
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Chapter 7

Conclusions

In this thesis we explored the importance of the meta-data hierarchies in the
retrieval and exploration process of large data corpora; we initially explained
the motivations of our work and analyzed the most relevant related works,
studying the problems that affect the existing approaches.

Then, we introduced novel mechanisms to formalize the meta-data con-
tent knowledge in order to enrich the pure structural information with in-
formation extracted from the considered corpora [21].

Based on these formalization approaches, we provided novel solutions
(based on different data format, user needs and tasks) that produce adapted
meta-data hierarchies that best represent the considered content knowledge.
In fact, we have shown that, if it is necessary, an adaptation of input meta-
data hierarchies can apport enormous benefits to retrieval processes, reduc-
ing the overall redundancy in the indexed contents (that can be now effi-
ciently associated to the meta-data nodes), without causing quality degra-
dations in the produced structure. We also studied the advantages and
disadvantages of the proposed methods, by introducing different measures
that quantify the losses and gains with respect to the most relevant prop-
erties of a meta-data hierarchy. We analyzed the previous existing works
on meta-data evaluations and, based on them, we proposed many different
measures that can greatly analyze the generated structures.

Moreover, we evaluated our works with many different data sets, in-
cluding real and synthetic ones, proving the effectiveness of the proposed
methods and comparing their performances with other alternative schemes.
We also analyzed the feedback of human users by user studies that showed
that the proposed algorithms are able to adapt the meta-data in new com-
pact and understandable structures from a human point of view.

147
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In particular, considering the text environment, we have introduced a
novel context-based narrative interpretation [24]; this narrative is then ap-
propriately segmented and summarized based on the data corpus content.
We showed that this approach provides significant benefits in terms of re-
dundancy reduction and domain coverage improvement in comparison with
standard alternative aggregation schemes.

On the other hand, if the adaptation method is used for distilling
value hierarchies for data tables (and support table summarization process)
we have shown that is possibile to significantly reduce the entire process
cost, again without causing significant quality degradations in the resulting
adapted meta-data hierarchy [20]. The idea that guided our work was to
adapt the original method introduced for text documents by analyzing the
constraints and the needs imposed by the data table format. In particular,
considering that the exploration of very large data tables is generally not
realized through taxonomical structures (but only uses them as background
knowledge), it is unrelevant to propose a method that permits to select the
number of documents. For this reason, we optimize the proposed method
by using a clustering approach that does not require any specific output
number of clusters (that can be, from the other side, very useful in a text
environment where the user can have specific requirements) And again, the
result provided the best time gain versus quality trade-off against alternative
schemes.

Moreover, we proposed novel exploration approaches that leverage the
adapted meta-data hierarchies to provide a more effective navigation within
the data space. The proposed methods tightly integrate the semantic con-
text(extracted from the previously adapted meta-data structures) with the
keywords extracted from the available data corpora.

In the text environment, this has been obtained by introducing a novel
keywords-by-concepts (KbC) graph, which is a weighted graph constructed
relying on a spreading activation like technique by a tight integration of the
adapted domain knowledge (i.e the adapted hierarchy, considered as the se-
mantic context) with the most domain relevant keywords extracted from the
text corpus. KbC graph is then leveraged for developing a novel Context-
based Search and Navigation (CoSeNa) system for context-aware navigation
and document retrieval [25, 26]. The unique aspect of our approach is that
it mines emerging topic correlations within the data, exploiting both sta-
tistical information coming from the documents’ corpus and the structured
knowledge represented by the input adapted meta-data. The case studies
and experiments, presented in this thesis, showed how this approach en-
ables contextually-informed strengthening and weakening of semantic links
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between different concepts.

In the same way, the adapted meta-data hierarchy can be positively used
for data table exploration purposes, by relying on the idea of summarization.
In fact, our approach takes as input a data table and (using the previously
calculated adapted meta-data hierarchy) returns a reduced version of it,
permitting the user to analyze only few entries that represent the general
data trends. The result provides tuples with less precision than the original,
but still informative of the content of the database, permitting the user to
easily explore the data knowledge. Moreover, this reduced form can not only
be presented to the user for exploration but it could also be used as input
for advanced data mining processes. In fact, with this method, each tuple in
the original table is represented, in the summary, with a more generic tuple
that summarizes its knowledge; on the other hand, each new tuple in the
summary represents a maximal set of original tuples that can be expressed
by it minimizing the information loss. We finally showed that the presented
summarization-based exploration approach can be able to lead the user in
a more effective navigation within the data tables by minimizing the overall
redundancy in the data (such as approximate functional dependencies and
other patterns) and the information loss (due to the reduction in details).

All the presented adaptation methods of hierarchical meta-data struc-
tures can be applied to the many applications (especially in web environ-
ments) that need to organize the data by using hierarchical taxonomies.
In fact, by using the proposed methods, it is possible to obtain a meta-
data structure that best represents the indexed contents, and therefore can
positively help the user navigate within the data space. Moreover, consider-
ing the many very dynamic environments (where the indexed data rapidily
evolve), it is also possible to periodically update and re-structure the consid-
ered meta-data by automatically running the proposed adaptation methods
on the new generated contents and keep the the taxonomy always aware of
the indexed data.

7.1 Future Works

It is important to notice that, within the examined problem, many others
solutions could be studied and analyzed in order to improve the efficacy of
the obtained structures in guiding the exploration of the data corpora.

For example, considering the importance of the user’s understanding of
the adapted structures, an interesting future direction of this thesis is about
the labeling strategy; in fact, considering that the main aim of these adapta-
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tion techniques is to produce a hierarchy that can be positively used by the
users to explore the data sets, the clarity of the labels of each new generated
concept-node is essential. Indeed, an effective meta-data structure needs to
be clear and explanatory, from a user point of view, in order to describe,
as precisely as possible, the knowledge of each node and discriminate, as
much as it can, their meaning with respect to all the other concepts in the
hierarchy (in order to permit a better navigation into the data and reduce
the overall redundancy).

Thus, instead of considering only the structural constraints imposed by
the original hierarchy, we are planning to extract, from the considered con-
text, for each retrieved cluster of concept nodes, a term (or a set of terms)
that can more effectively describe its content. In fact, the main idea is that
the knowledge expressed by a cluster of nodes could be better described
by a keyword (or set of keywords), extracted from the data corpus, instead
of a label created by merging the original ones. In fact, as in the natural
language, a complex concept identified by a set of terms could be described
by another word that best summarizes the meaning of the concept defined
by the set of considered terms.

Thus, we are planning to investigate this problem by analyzing the se-
mantical relationships that exist between a set of hierarchy nodes (instead of
considering each one of them separately) and the considered data contents,
in order to extract the terms that could better represent them in the adapted
hierarchy. This is an evolution of the proposed strategy that considers each
node in the original hierarchy as a separate entity and does not take into
account their similarities (or in same cases even overlappings) retrieved by
the concept clustering step.

Lastly, as already explained, the proposed methods only condense the
input meta-data hierarchies and cannot add new concepts to the considered
structures: thus, we are planning to explore this possibility by applying
statistical approaches that analyze the data associated to each cluster and
extract a set of features that are highly correlated it (and also very poorly
correlated with all the others). These features can be therefore transformed
into new concept nodes (representing them with the most discriminating
keyword labels) and added to the existing structure based on occurrences’
information.

Moreover, we are also planning to use machine learning techniques and
alternative background knowledge (as other meta-data hierarchy that de-
scribe the same domain) to improve the efficiency of the clustering step and
better analyze the similarities among concepts. In particular, we are plan-
ning to extend our meta-data adaptation method in order to consider many
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different domain hierarchy structures and therefore distill a meta-data by
integrating the knowledge expressed by all of them.
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