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ABSTRACT
Ontologies and concept taxonomies help software systems
organize data more effectively for particular application do-
mains. Ontologies also enable sharing and integration of
data from different domains and data sources. However,
ontologies from different domains are rarely identical; thus,
there is need for techniques to find alignments between con-
cepts in different ontologies and taxonomies. In this paper,
we first note that alignment algorithms can be classified into
two, structurally-informed and extensionally-informed. We
then present a concept vector based scheme that captures
structural information inherent in taxonomies to facilitate
structure-based matching of concepts across taxonomies. We
further note the structurally-informed concept vectors can
further enable us to benefit from an available corpus of
documents to implement extensionally-informed matching
schemes with improved power of discriminating synonyms
and homonyms of concepts.

1. INTRODUCTION
Ontologies and taxonomies are used in diverse areas of sci-

ence, as well as in various standardization and information
integration efforts, where the knowledge about the relation-
ships of concepts is important. Given a concept taxonomy
for a particular application domain, software systems can or-
ganize data more effectively. Thus, various knowledge-rich
applications, including clustering algorithms, browsing sup-
port interfaces, and recommendation systems, perform more
effectively when they are supported by domain describing
ontologies, which help resolve ambiguities and provide con-
text.

Ontologies also enable sharing and integration of infor-
mation from different domains and data sources. However,
ontologies from different sources are rarely identical; thus,
there is need for techniques to find alignments between con-
cepts in different ontologies and taxonomies.
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Figure 1: Two conflicting shark taxonomies

1.1 Motivating Application I: Archaeological
Data Integration

Through a joint effort of archaeologists and computer sci-
entists, we are developing a framework of knowledge-based
collaborative tools that will provide the foundation for a
shared information infrastructure for archaeology and con-
tribute substantially to a shared knowledge infrastructure of
science1. Comprehensive, large-scale archaeological data are
never collected by a single research team; data must be com-
piled from many projects. The incapacity to integrate data
across projects cripples archaeologists’ and other scientists’
efforts to recognize phenomena operating on large spatio-
temporal scales and to conduct crucial comparative stud-
ies [14, 30, 31]. A major challenge with integration of data is
that the meaning of an archaeological observation is rarely
self-evident. In archaeology, metadata that describe clas-
sification schemes, sampling and processing methods, and
contexts of archaeological observations are essential to use
datasets of any complexity.

Archaeological metadata are often hierarchical in nature;
in particular, they include hierarchies of concepts (e.g. for
biological and other taxonomies, see Figure 1, [30]). An im-
portant reality when integrating archaeological data is that
entries (archaeological observations and interpretations) may

1NSF Grant, AOC: Archaeological Data Integration for the
Study of Long-Term Human and Social Dynamics, 2007-
2009



(a)

(b)

Figure 2: Two automatically-generated AI tax-
onomies obtained using the MAISON taxonomy ex-
tractor

often be “missing” or only partially specified. For exam-
ple, one may not be able to associate a bone collected at
a given site to the species and may use vague terms or ref-
erences to a hierarchically higher concept in the biological
taxonomy. Thus, researchers reach conflicting conclusions,
not just because their primary data differ, but because they
operationalize interpretive concepts differently. Neverthe-
less, in the context of a particular research question, ar-
chaeologists could identify reasonable means of addressing
these inconsistencies [14]. Reconciling data and classifica-
tion schemes entails developing novel alignment techniques
to allow representation of integrated knowledge despite in-
herent mismatches.

1.2 Motivating Application II: Automatic Tax-
onomy Extraction and Integration for Ef-
fective Access to Digital Libraries

As part of the iCare project at Arizona State University,
we are developing assistive and rehabilitative technologies
for students who are blind and visually impaired. Our ef-
forts include the MAISON project for developing a novel as-
sistive system to help students and educators who are blind
in accessing online digital records applicable for a teach-
ing/learning task2. In particular, the content being regis-
tered into the National Science Digital Library (NSDL) is

2NSF Grant “MAISON: Middleware for Accessible Informa-
tion Spaces on NSDL”, 2008-2009

analyzed and adapted for effective search and navigation by
individuals who are blind. This involves not only indexing
and querying of text, but also understanding and merging
learning contexts in which various educational material is
offered through a knowledge taxonomy extraction process.

Figure 2 shows two similar, but different, AI taxonomies
obtained using the MAISON taxonomy extractor[4] from
different sources. As it can be seen here, the automatically
generated taxonomies are imperfectly aligned: for example,
in one of the taxonomies, the root has exactly one child,
with label “classifier”, while in the other the root has
three children, and “classifier” is one of them. This may
be due to both imperfection in the taxonomy extraction pro-
cess as well as the different contexts of the texts.

Thus management and integration of these taxonomies
within MAISON, to help with precise searches, require mech-
anisms and models that are able to handle semantic conflicts
and misalignments. In particular, they require techniques to
recognize the nodes that (are likely to) denote the same con-
cept in different taxonomies.

1.3 Contributions of this Paper
In this paper, we note that there is need for techniques

to align taxonomies by taking into account both the taxon-
omy structure and the ”context” in which they will be used.
More specifically, we observe that when taxonomies are used
as information sources supporting navigation in a document
space, the way users perceive the degree of matching be-
tween pairs of concepts is highly dependent on the domain
being explored.

Consider for example the concepts ”German Shepherd”
and ”White Shepherd”. These can be considered as differ-
ent concepts as long as the scientific classification of dogs
is concerned in a scientific domain where distinguished in-
stances of these concepts can be identified. On the other
hand, it might make sense to see them as matching con-
cepts in a domain in which the distinction between the two
species is not relevant, as it would be the case, for example,
in a space of books which are novels having animals as their
characters. If the taxonomy had to be used as a navigation
tool for recommendation purposes, a broader classification
of both ” Shepherds” as ”dogs” would probably be sufficient.
This observation motivates our emphasis on the use of the
domain data classification as input for the evaluation of the
degree of matching between concepts.

We then argue that the advantages of the structure based
and information based approaches can be combined in a
structure and extension informed matching approach. Un-
like the tree edit-distance based [32] or top-down/bottom-
up [20, 16] schemes, our approach relies on both structural
and extensional properties of the given concept taxonomies.
It leverages the structural information coded by the hierar-
chical structure of the given taxonomies to infer matching
relationships, that could not be directly detected through
element-level matching techniques. The information about
the extension of the concepts against a given database, con-
textualizes and grounds the taxonomy on the considered
database and helps resolving conflicts/mismatches that might
arise if only structural aspects are considered.

The paper is organized as follows. Section 2 shortly re-
calls the major ideas behind the existing structure and ex-
tension informed matching methods. Section 3 introduces
an alternative structure based approach that uses concept-



vectors for matching concepts between taxonomies. Section
4 combines the purely structural approach with extension
based matching evaluation, thus resulting in a method that
is structure-and extension-informed at the same time. Sec-
tion 5 evaluates the proposed method and shows its effec-
tiveness on our test cases. Section 6 concludes the paper
and presents our future work plan.

2. RELATED WORK
The problem of matching context-describing taxonomies

has been investigated in various application areas, especially
in scientific, business, and web data integration [27, 8, 20,
18, 5, 22, 16, 24, 3]. Different matching techniques focus on
different dimensions of the problem, including whether data
instances are used for schema matching, whether linguistic
information and other auxiliary information are available,
and whether the match is performed for individual elements
(such as attributes) or for complex structures[27].

Cupid [16] is a schema-based approach that implements
a sequential composition of different matchers. It consists
of a first phase based on a linguistic matcher and a sec-
ond phase based on a structural matching technique. The
linguistic matcher calculates similarity coefficients between
schema label nodes, while the structural matcher computes
similarity values which measure the similarity between con-
texts in which elementary schema elements occur. A final
phase aggregates these results by means of a weighted sum
and compares them with a given threshold in order to gener-
ate the alignment. This algorithm operates only with trees:
other schemas can be handled through a translation process.
[20] uses schema graphs for matching; matching is performed
node by node starting at the top; thus this approach pre-
sumes a high degree of similarity (i.e., low structural differ-
ence) between the taxonomies. Onion [22], the successor of
SKAT [21], is a schema-based system that leverages logic
rules to discover match and mismatch relationships between
multiple ontologies, internally represented as labeled graphs.
The matching algorithm proposes a sequential (and semi-
automatic) approach that first performs a linguistic match
and then applies a structure-based matching. The latter
is based on the result of the first step and tries to match
only the unmatched terms; it is based on a structural iso-
morphism detection technique between the subgraphs of the
ontologies. [3] and DIKE [25] use the distance of the nodes
in the schemas to compute the mappings; while comput-
ing the similarity of a given pair of objects, other objects
that are closely related to both count more heavily than
those that are reachable only via long paths of relationships.
Glue [9], the successor of LSD [6], is an instance-based semi-
automatic system that uses machine-learning techniques to
discover one-to-one mappings between two taxonomies. It is
based on the joint distributions that are used for any similar-
ity measures. This approach can be divided in three steps.
First, a multi-strategy learning approach allows to compute
the joint distribution of classes that are used in the second
step to produce a similarity matrix. The latter is used in the
final phase by a relaxation labeling technique in order to fil-
ter only the best matches contained in the similarity matrix.
Differently from Glue, FCA-merge [1] takes as input two on-
tologies that share the same set of instances and returns a
new ontology. It uses formal concept analysis techniques,
through a three steps process: instance extraction, concept
lattice computation, and (interactive) generation of the fi-
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Figure 3: An IS-A hierarchy: “bus” and “cab” are
more closely related than “bus” and “minibike”.

nal new ontology. Clio [18, 19] is a mixed schema-based and
instance-based system that proposes a declarative approach
to schema mapping between XML and relational schemas.
After the first phase in which input schemas are translated
into an internal representation, the system sequentially com-
bines an instance-based attribute classification (by using a
Bayes classifier) with a string matching between elements’
names. These n-to-m value correspondences can be also en-
tered by the user through a graphical user interface. Then,
Clio produces a set of logical mappings with formal seman-
tics, also supporting mappings composition. [8] provides a
more detailed classification of matching techniques, based
on other features including different similarity measures,
matching strategies (such as name similarity or class sim-
ilarity), and degrees of user involvement. [11] proposes an
algorithm for ontology matching which combines standard
string distance metrics with structural similarities computed
using an iterative algorithm.

Despite such advances in structural mapping technologies,
alignments across data sources are rarely perfect. In particu-
lar, imperfection can be due to homonyms (i.e., nodes with
identical concept-names, but possibly different semantics,
in the given taxonomy hierarchies) and synonyms (concepts
with different names but same semantics). While structural-
matching techniques help finding node-to-node alignments,
they fall short when such scenarios arise.

3. STRUCTURE INFORMED ALIGNMENT
USING CONCEPT VECTORS

Many knowledge-driven applications (such as text clas-
sification, word sense disambiguation, and data mapping)
require mining of semantic similarity/ dissimilarity values
between concepts in a given domain. Therefore, the study
of semantic relationships between words in a language has a
long history in psychological theory, natural language pro-
cessing, and knowledge management. There are various gen-
eral purpose efforts, such as WordNet [17] and FrameNet [2],
to model the lexical knowledge underlying a language in
the form of a hierarchical taxonomy, where the structure of
the graph represents the knowledge about the relatedness of
the words. Intuitively, highly related words are grouped to-
gether and the path between two different concept-nodes in
the hierarchy reflects how these are related in the real-world.

If, for example, we consider the WordNet segment pre-
sented in Figure 3, we can intuitively see that the two con-
cepts, “bus” and “cab”, are more closely related to each other
than concepts, “bus” and “minibike”.

3.1 Concept Similarity Computation and
Concept-Vectors

In the last decade various measures for estimating the se-
mantic similarity of keywords in a given taxonomy have been
proposed. These measures can be roughly categorized into



Table 1: Concept vectors for the nodes in Figure 3
motor vehicle car truck motorcycle bus cab sedan minibike trail bike

cv1(motorvehicle) 0.450 0.151 0.152 0.152 0.0176 0.018 0.018 0.021 0.021
cv2(car) 0.052 0.4697 0.006 0.006 0.156 0.156 0.156 0.0003 0.0003

cv3(truck) 0.100 0.012 0.873 0.012 0.0006 0.0006 0.0006 0.0007 0.0007
cv4(motorcycle) 0.057 0.007 0.007 0.520 0.0003 0.0003 0.0003 0.204 0.204

cv5(bus) 0.004 0.100 0.0002 0.0002 0.872 0.012 0.012 0 0
cv6(cab) 0.004 0.100 0.0002 0.0002 0.012 0.872 0.012 0 0

cv7(sedan) 0.004 0.100 0.0002 0.0002 0.012 0.012 0.872 0 0
cv8(minibike) 0.006 0.0003 0.0003 0.165 0 0 0 0.806 0.023
cv8(trailbike) 0.006 0.0003 0.0003 0.165 0 0 0 0.023 0.806

structure-based (or, edge-based) methods and information-
based methods. In structure-based methods, the semantic
similarity between two words is measured by the shortest
distance between them [26] or the sum of the edge weights
along this shortest path [29]. Information-based methods
leverage available corpora to extract additional information,
such as keyword frequency, to achieve better similarity eval-
uation than those approaches that rely only on the structural
analysis of a hierarchy. For example, [28] estimates the sim-
ilarity between two concepts using the information content
(i.e., negative logarithm of the probability of encountering
an instance of the concept in the corpus) of the concepts
subsuming them. When using [28], the similarity between
“bus” and “minibike” in Figure 3 would be determined by
the information content of the node “motor vehicle”, which
subsumes both words in the hierarchy.

Recently, [13] showed that there is an alternative ap-
proach to leverage structural knowledge inherent in tax-
onomies to compute the semantic similarity between nodes.
The proposed algorithm, concept propagation/concept vec-
tors (CP/CV), significantly improves semantic similarity
measurements on a given taxonomy, when compared with
other structure-based methods and gives as good or better
results than information-based methods. Given a taxonomy,
CP/CV assigns a concept-vector to each concept node in the
taxonomy, such that the vector encodes the structural rela-
tionship between this node and all the other nodes in the
hierarchy. The concept vectors are obtained by propagating
concepts on the taxonomy graph according to their semantic
contributions (dictated by the structure of the taxonomy).
In CP/CV , given a hierarchy, H(N, E) with m concept-
nodes, each node is mapped onto a concept-space with m
concept-dimensions. Initially, each concept-node is mapped
into the concept-space along the dimension corresponding to
itself. Then, for each pair, ni, nj , of neighboring concepts,
CP/CV computes two values, Gstr

ni,nj
and Gcs

ni,nj
. Gstr mea-

sures the degree of generality between two entities computed
using the taxonomical structure. Gcs, on the other hand,
computes a corresponding value using the concept space.
Since these hierarchical and multi-dimensional representa-
tions are different views over the same semantics, CP/CV
computes concept propagation parameters that preserve the
equality

Gcs
ni,nj

= Gstr
ni,nj

after propagation. This process is iterated until all nodes
are informed of all the others. Once the process is com-
puted, since all the concepts are mapped into the same vec-
tor space, semantic similarities of the concepts are computed
using the cosine similarity of the concept vectors. Measuring
the semantic similarities across different taxonomies, using
the cosine measure of concept-vectors directly, would not

be possible as the concept-spaces corresponding to different
taxonomies are also different. As shown in [13], this leads
to a very precise similarity measure of concepts within a
taxonomy.

Example 3.1. Consider the taxonomy fragment contain-
ing the nine nodes presented in Figure 3. Each concept is
represented by a 9-dimensional vector. Vector’s elements are
associated to the taxonomy nodes, considered in breadth first
order. In particular, the root is represented by the vector

〈0.450, 0.151, 0.152, 0.152, 0.0176, 0.018, 0.018, 0.021, 0.021〉,

in which the first component - the one associated to the tag
”motor vehicle”, dominates over the others that contribute
to the definition of the concept. The second, third and fourth
components reflect the weight of ”car”, ”truck” and ”motor-
cycle” respectively in the semantic characterization of ”mo-
tor vehicle”, while the remaining components represent the
weights of the three descendants of ”car” and of the two de-
scendants of ”motorcycle”. Similarly, the concept vectors
for all nodes are as shown in Table 1.

3.2 Matching Concepts across Taxonomies
through Concept Vectors

In this paper, we build on the idea of concept-vectors 3

for matching concepts across taxonomies. The concept-
vectors obtained by processing the hierarchical structure of
the given taxonomies allow us to infer new matching re-
lationships, not directly detectable through element-level
matching techniques. A node in a given hierarchy clusters
all its descendant nodes and essentially acts as a context for
the descendant nodes (Figure 4(a)). Similarly, descendants
of a given node may also act as a context for the node (Fig-
ure 4(b)), differentiating the node from others that are sim-
ilarly labeled. Consequently, one way to differentiate nodes
from each other is to infer the contexts imposed on them
by their neighbors, ancestors, and descendants in the given
hierarchy, enrich (or annotate) the nodes using vectors rep-
resenting these contexts, and compare these context-vectors
along with the label of the node. While CP/CV vectors are
able to capture the descendant supplied context as well as
the ancestor supplied context, most other structural schemes
rely only on ancestor supplied context in alignments.

3These concept vectors are different from concept vectors in-
troduced in [11] and used for the purposes of alignment. In
[11], the concept vector of a node in taxonomy T1 repre-
sents the degree of matching of this node to all nodes in
another taxonomy T2. The concept vectors introduced in
[13] and also used in this paper, on the other hand, rep-
resent the relationships of the nodes in a single taxonomy
among themselves. Consequently, the concept vectors for
each taxonomy are created independently and thus can be
reused for matching a given taxonomy to many others.
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Figure 4: (a) Ancestor-supplied context differentiat-
ing the two “C”s and (b) descendant-supplied con-
text differentiating the two “A”s

Let H1(N1, E1) and H2(N2, E2) be two taxonomies. Let
S1 and S2 be two concept spaces corresponding to H1 and
H2. Note that S1 and S2 have |N1| and |N2| dimensions, re-
spectively. Let also C1 and C2 be the sets of concept-vectors
corresponding to the individual concepts in both hierarchies
(|C1| = |N1| and |C2| = |N2|).

A particular challenge that arises when matching tax-
onomies using two different concept-spaces is that, before
the concept-vector similarities can be computed, one needs
to match and align the dimensions of the concept-spaces,
themselves. Depending on the domain application, and on
the expected use of the taxonomies (i.e., the expected clas-
sification method) different approaches can be adopted. If
the concepts associated to the nodes of the taxonomy are
denoted by single word labels, and the expected classifi-
cation is string match based (as it is the case, for exam-
ple, if the database objects are classified based on the oc-
currence of label keyword in their description, or in some
attribute/field), the space alignment needs to rely on syn-
tactical evidences; i.e., matches between the “names” of
the concepts. For example “german-shepherd” and “white-
shepherd” are similar concept names. Unfortunately, syn-
tactic similarities may not always correspond to semantic
alignments (e.g., “german-shepherd” and “shepherd” are also
syntactically similar, but while the first one identifies a class
of dogs, the second one is likely to identify a class of human
beings). While such syntactic matches across concept names
cannot be used alone to measure semantic similarity, they
can be leveraged as starting point while aligning the dimen-
sions of the two spaces.

We note that (especially when fuzzy syntactic similarities
are considered for aligning dimensions) the dimensions of
the concept-space are potentially pairwise correlated. This
is likely to introduce some bias in the measure of the degree
of matching among nodes. These biases can be taken into
account by using generalized measures, such as the following
generalized dot product

dotprod gen( ~cv1, ~cv2) = ~cv1

2

4

α1,1 α1,2 . . . α1,m

. . . . . . . . . . . .
αn,1 αn,2 . . . αn,m

3

5 ~cv2
T ,

where αi,j accounts for the lexical similarity between the
ith concept in the first taxonomy and the jth concept in the
second.

Given a concept ni ∈ N1, we compute a fuzzy match
in the aligned space between ni and all nj ∈ N2. This
provides a list of candidates in taxonomy, N2, poten-
tially matching ni ∈ N1, in decreasing order of like-
lihood. As an example, reconsider the two fragments
in Figure 1. Here, after concept propagation, the con-
cept vector associated to “Chondrichthyes′′ in the first

fragment will capture the existence of its relationship
with ‘‘Helasmobranchii’’ and ‘‘Holocephali’’. When
“Chondrichthyes′′ is matched against the concepts in the
second taxonomy, this will most likely identify two candidate
matches for ‘‘Chondrichthyes’’; ‘‘Helasmobranchii’’

and ‘‘Holocephali’’.

4. EXTENSION-INFORMED ALIGNMENT
While concept vectors help us capture and leverage the

structural information embedded in taxonomies for match-
ing their concept nodes, in this paper we note that they
can also enable us benefit from an available corpus of doc-
uments to improve matching performance. The main idea
behind the extensionally-informed matching is that

“if two concepts in two different taxonomies are
to be considered similar in the considered con-
text, then they will relate to similar documents
in the corpus; in contrast, if two concepts are to
be considered different, then the documents that
relate to these concepts will also be different.”

In line with the common notion in literature, we call the
documents that a concept relates to as its extension.

One trivial way of identifying extensions of concepts is
to find documents that contain the corresponding concept
name as a keyword. This, however, cannot be used for tax-
onomy alignment:

• synonyms in two different taxonomies will have iden-
tical extensions, and

• homonyms in the taxonomies will have (most likely)
very different extensions.

Instead, we need a mechanism that identifies extensions of
concept nodes without relying only on their concept names.

The concept vectors associated to the concept nodes pro-
vide a convenient way to identify extensions. In particular,
we rely on a classifier module which takes as input the set
CV = {cv1, . . . , cvm} of the concept vectors representing the
taxonomy, and the set V = {v1, . . . , vn} of vectors repre-
senting the documents to be classified. Keyword vectors are
defined in the space of the entire set of document keywords;
each dimension corresponds to a keyword, and the weights
in the vector represent the relevance of the corresponding
keyword value in the document represented by the vector.
The goal of the classification component is to associate the
database documents to their best representative concepts in
the taxonomy. We capture this notion of representativeness
through the notion of the similarity among the taxonomy
and document vectors representing taxonomy concepts and
documents, respectively. Semantic similarities (at the basis
of the classification process) between the concepts and the
objects being classified are computed by

• unifying the vector spaces of the concepts and of the
objects. The unification of the spaces consists in
unioning the dimensions in the given ones, and repre-
senting every vector in the new extended space by set-
ting to 0 the values corresponding to those dimensions
that were not appearing in the original vector space,
while keeping all the other components unchanged.

• using the dot product similarity of the vectors.

In the following discussion we will always assume to deal
with vectors sharing the same space.



4.1 Document-to-Concept Classification
For every document in the corpus, the classification iden-

tifies the taxonomy concepts that best match with it. Each
document is considered as belonging to the extensions of
those concepts whose similarities with it are above an adap-
tively computed critical point. The classification steps are
the following:

1. For each database document

(a) calculate the vector vj , where each element con-
tains the augmented normalized term frequency
[10] of a document keyword.

(b) compute its similarity wrt. all the concept vectors
describing the given taxonomy.

sim(cvi, vj) = Σu
k=1cvik × vjk

(c) sort the concepts vectors in decreasing order of
similarity wrt. vj ;

(d) choose the cut-off point to identify the concepts
which can be considered sufficiently similar to
justify the classification of the object under them.
Our method adaptively computes a cut-off as fol-
lows: It

i. first ranks the concepts in descending order of
match to vj , as previously calculated in (c).

ii. computes the maximum drop in match and
identifies the corresponding drop point.

iii. computes the average drop (between consec-
utive entities) for all those nodes that are
ranked before the identified maximum drop
point.

iv. the first drop which is higher than the com-
puted average drop is called the critical drop.
We return concepts ranked better than the
point of critical drop as candidate matches.

At the end of this phase, all documents in the corpus are
associated to the extension of at least one concept, provided
that there is at least one concept in the taxonomy whose sim-
ilarity with the document is greater than zero. Notice that
the extensions of different concepts are not disjoint, since
the same object can be assigned to multiple (similar) con-
cept vectors. The number of concepts associated to a given
document depends on the corresponding adaptive threshold
value computed by the classification algorithm.

4.2 Extension-based Matching
The extensions computed for nodes are then used for sup-

porting extensionally-informed matching between pairs of
nodes. In particular, we consider as highly matching those
concepts whose extensions are very similar. Thus, the def-
inition of the matching reduces to the notion of similarity
of the extensions. The extension based matching is based
on the notion of classification: given a document d and a
concept c, it considers the document d as either belonging
or not belonging to the extension of c, without any other
information about the degree of membership.

Definition 1. (Extension based Matching) Let ci and
cj two concepts, and Eci

and Ecj
their corresponding ex-

tensions. Their degree of matching is computed as

CEM(ci, cj) =
|Eci

∩ Ecj
|

|Eci
∪ Ecj

|
.

This can be seen as a special case of the Jaccard Similarity
[12, 15], which given two sets A and B, and the probability
distribution P (X) (probability of a random instance to be
in the set X), defines the similarity between A and B as

Jaccard sim(A,B) = P (A∩B)
P (A∪B)

. Essentially, this extension-

based matching technique leverages both structural knowl-
edge embedded in the concept vectors as well as the context
provided by the corpus of documents. In the next section,
we will experimentally evaluate the impact of extensional
knowledge on the alignment process.

5. EXPERIMENTAL EVALUATION
To run our evaluation experiments, we consid-

ered a taxonomy extracted from the DMOZ scien-
tific concepts categorization accessible at the link
http://www.dmoz.org/Science/. The considered taxon-
omy has 73 nodes, depth 4, and different branching factors
in its internal nodes (the average value is 5.14). To test the
extension based approach, we have classified 17420 article
abstracts describing NSF awards for basic research 4.

To evaluate the effectiveness of the proposed matching
strategy in the presence of different conditions, we created
a second taxonomy to be matched against, by introducing
controlled distortions to the first one. For each of the fol-
lowing conditions we applied distortions of the order of 20%
and 40% of the nodes.

• Synonyms : we randomly picked a percentage of nodes,
and relabeled their concept names with other keywords
(without affecting the structure of the taxonomy).
Note that the new strings are actually random –i.e.,
not “synonyms” in English language- thus they do not
actually occur in the documents. This constitutes a
worst case situation for extension based algorithms.

• Homonyms: we randomly picked a percentage of
nodes, and for each of them introduced a replica in
randomly selected positions of the other taxonomy.
The replica has the same concept name, but is con-
textualized in a different position in the structure of
the taxonomy, thus it denotes a different concept (i.e.,
homonym).

We then compared extension-based (Class) matching to two
pure structural matching techniques, CP/CV, which consid-
ers both ancestor and descendant supplied contexts, and
closest-common-ancestor distance (Anc), which considers
only ancestor supplied context.

Figures 6(a) and (b) show the synonym matching results.
In this figure, the X axis denotes the nodes and Y axis de-
notes the rank at which the corresponding node is found
in the distorted taxonomy. Note that if the alignment al-
gorithms work perfectly, then relabeling does not have any
impact and all nodes are found at rank 1.

• For the 20% distortion case (Figure 5(a), the portion
relabeled is on the right), we see that Class returns
perfect match (100% of perfect matches). Anc makes
some mistakes when a node near the root is relabeled
(86.3% of perfect matches). CP/CV on the other hand
works very well for non-relabeled nodes, but (since it

4http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
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Figure 5: Matching results under concept re-
labeling.(rank=1 indicates perfect match)

relies on the concept labels to some degree) it per-
forms imperfectly for re-labeled nodes (88.3% of per-
fect matches). In short, while it is based on the
CP/CV vectors, Class improved the results thanks to
available extensions.

• When 40% of the nodes are arbitrarily relabeled (Fig-
ure 5(b), the portion relabeled is on the right), this has
a significant impact on the performance: Anc makes
significant errors across the board (42.2% of perfect
matches). CP/CV, once again, works very well for non-
relabeled nodes and performs imperfectly (but not
very bad) for re-labeled nodes (totally 64.8% of per-
fect matches). The performance of Class in this heav-
ily distorted situation depends on whether the terms
support classification. Except for the cases in which
the random labels inserted into the taxonomy prevents
classification of the corresponding node5, Class per-
forms very well (83.4% of perfect matches).

Figures 5(a) and (b) show the matching results in the pres-
ence of multiple concepts with identical labels (we only show
heavy, 40%, distortion). Figure 5(a) presents the matching

5These cases are marked with 3 and ©

Node-copy Distortion (40%) 

self-match results

1

10

100

Node

S
e

lf
-m

a
tc

h
in

g
 R

a
n

k

Class

Anc

Cp/Cv

not-in-text

NODES WITH COPYNODES WITHOUT COPY

(a)

Node-copy Distortion (40%) 

homonym-match results

1

10

100

Node

H
o

m
o

n
y
m

-m
a
tc

h
in

g
 r

a
n

k

Class

Anc

Cp/Cv

not-in-text

NODES WITHOUT COPY COPY NODES

(b)

Figure 6: Matching results under homonyms. For
(a) rank=1 indicated perfect match. for (b) i.e.,
homonyms, it is better to have match rank ≫ 1.

ranks for corresponding nodes, while Figure 5(b) shows the
matching rank for the homonyms. Note that, for the for-
mer case, the closer to 1 the rank, the better the results
are; whereas, for the homonym case, the further from 1 the
ranks, the more discriminating the algorithm is.

• For self-matching cases (Figure 6(a)), since the node-
copy distortions do not affect any internal nodes, Anc
works perfectly (100% of perfect matches). CP/CV,
which gets structural context also from descendants
introduces some errors (rank 2 instead of 1) but, gen-
erally works well (78.5% of perfect matches). Class, on
the other hand, works well unless the concept does not
occur in the corpus at all6 (91.2% of perfect matches):
randomly copied concepts distort structural contexts
in the destination positions and, thus, prevent other
concepts from leveraging the corpus using their own
concept-vectors.

• For homonym-matching cases (Figure 6(b), we see that
Class works the best (puts the homonym furthest
away from rank=1), whether the concept occurs in the
corpus or not. In both cases, while the original concept

6These cases are marked with ©



is able to leverage the context provided by its neigh-
borhood to classify documents, the arbitrarily picked
context of the copy does not classify similar documents
and homonyms are strongly identified.

5.1 Summary
It is important to note that the experimental evaluation

shows that neither approach can be considered as better
than the others under all situations. This is because, differ-
ent methods leverage different hints. In particular, extension
based methods perform better than purely structure based
ones in those concepts for which a ”significant” extension
exists in the corpus.

6. CONCLUSIONS
In this paper, we have shown that concept vectors can

be used for both capturing the inherent structure of tax-
onomies for implementing structural matching algorithms
and for identifying documents relating to the individual con-
cepts of the taxonomies to implement extensional matching
schemes. Experimental results showed that when combined,
structural and extensional techniques provide superior han-
dling of synonym and homonyms.

To leverage the good performances of both methods, we
are working on a combined matching strategy, that gives
higher weight to the extension based approach whenever
populated concept extensions are available, while relying on
our structure based approach when measuring the degree
of matching of concepts whose extension in the considered
domain documents is empty.
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